BULETINUL INSTITUTULUI POLITEHNIC DIN IAȘI
Publicat de
Universitatea Tehnică "Gheorghe Asachi" din Iași
Tomul LV (LIX), Fasc. 3, 2009
Secția
ELECTROTEHNICĂ. ENERGETICĂ. ELECTRONICĂ

VLSI IMPLEMENTATION OF CMOS LOW POWER FULLY DIFFERENTIAL PHASE-LOCKED LOOP

BY

RADU-GABRIEL BOZOMITU and VLAD CEHAN

Abstract. High-speed low-power phase-locked loop (PLL) circuits find wide application in high-performance communication systems. This paper describes the VLSI implementation of a CMOS low power fully differential PLL circuit. The phase detector of the proposed PLL is represented by an analog multiplier implemented with a Gilbert cell and the voltage controlled oscillator is configured as a ring oscillator with two stages which provide quadrature outputs; it incorporates phase shift elements to obtain a wider tuning range. The frequency operation range is situated between 40...740 MHz and can be set by using digital command logic. The circuit provides an output signal having THD ≤ 1% over all this range and can lock to the input in the presence of temperature, supply voltage and process variations. The current consumption of the circuit is 2.7 mA from a 3.3 V supply voltage. The simulations performed in a 0.18 μm CMOS technology confirm the theoretical results.

Key words: PLL; Gilbert cell; transconductance; VCO; ring oscillator; LPF; CMOS; VLSI.