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Abstract. The eddy currents in a conducting plate having a rectangular 
section, situated in a homogeneous magnetic field, which is a periodical, non-
harmonic function of time, are studied. The utilized method, which permits to 
study the eddy currents in the conducting plate, is based on a symbolic 
proceeding representing the periodical, non-harmonic signals, through 
hypercomplex “images”. The hypercomplex moduli of the electromagnetic 
field’s state vectors are determined, individually, namely those produced by the 
low, medium and high order harmonics of the external magnetic field. The 
resultant expressions of the hypercomplex electromagnetic field’s state vectors 
are obtained applying the superposition theorem having in view that the 
behaviour of the conducting plate in electromagnetic field is considered a linear 
one. 
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1. Introduction 

 
It is well known that if a massive conductor is placed in a variable in 

time magnetic field in the conductor are generated currents named eddy 
currents (Foucault). The most frequent cases studied in the specialty literature 
are those concerning a conducting plate having a rectangular section or a 
straight cylindrical conductor having a circular section, situated in a 
homogeneous magnetic field harmonically variable in time (for instance 
(Rosman et al., 1999)). 

In what follows the eddy currents generated in a conducting plate, 
having a rectangular section and situated in a homogeneous magnetic field, are 
studied, when the magnetic field is variable in time periodically but not 
harmonically. The conducting plate is considered infinite long, having the width 
d (Fig. 1), the external magnetic field allowing the development in a Fourier 
series 
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Fig. 1 

It is considered that this magnetic field is 
tangentially oriented to plate’s faces. 

When the external magnetic field has a 
harmonically variation in time, the complex r.m.s. values 
of the electromagnetic field induced in the plate vector 
are (Mocanu, 1984) 
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where H0 is the complex r.m.s. value of vector 
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and 
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Here γ represents the complex propagation constant of the electromagnetic wave 
in the conducting medium, α – the attenuation constant and β – the phase 
constant (α = β), μ, σ – the material constants of the conducting medium, 
considered homogeneous, isotropic and without hereditary phenomenons. 

Vectors Eint(x, t), Hint(x, t) being known, it is possible to determine 
Poynting vector, for instance in a point situated on the conducting plate’s 
surface. His complex expression is 
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At low frequencies it is possible to retain from hyperbolic trigonometric 

functions series developments 
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only the first two terms. In this case relations (2) and (5) become 
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respectively 
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At high frequencies it is possible to approximate the hyperbolic 

trigonometric functions with their asymptotic values 
 

ch e ,   sh e ,mm m≈ = m                                               (9) 
 
so that relations (2) and (5) become 
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respectively 
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In what follows the dispersion vs. time of material constants, σ, μ , is 

neglected.                                    
 

2. Study Method 
 

It is advantageously to study the eddy currents in periodical non-
harmonic steady-state using a symbolic method based on representation of 
periodical, non-harmonic signals, through hypercomplex images, proposed by 
B.A. R o z e n f e l d (1949). This method consists in attaching to a periodical 
non-harmonic signal, which admits the development in Fourier series 
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a hypercomplex “image” 
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where functions 1k , jk are orthonormalized. The so defined algebra is 
commutative, representing a direct sum of real number field (generated by 10) 
and the numberable set of complex numbers set (generated by the pair 1k , jk), 
the unity element of this algebra being 
 

0
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The relations 
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are satisfied too. 

Having in view that the symbolic identity 
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is verified by the hypercomplex “images”, it results that this symbolic method 
posses the advantage of  “algebrization” of differential operations with respect 
to time, analogous with the one presented by the symbolic method of complex 
“images” used in the case of harmonic steady-state study. 

A variant of this symbolic method was exposed by the author in a 
previous paper (Rosman, 2010). 

 
3. Hypercomplex Vectors Êint(x), Ĥint(x), Ŝ(d/2) 

 
If the state hypercomplex vectors of an electromagnetic field, in 

periodical, non-harmonic steady-state, in a point situated at distance x ∈ [0, d/2] 
from the conducting plate’s (having a rectangular section) symmetry axis, are 
denoted with Êint(x) and Ĥint(x), when the plate is situated in a homogeneous, 
periodical but non-harmonic magnetic field, having the expression (1), d being 
the plate’s width, the expressions of these hypercomplex vectors are, from a 
formal point of view, analogous to relations (2), being sufficiently to substitute 
in these relations γ and H0 with 
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and, respectively, 
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where γ̂  is the hypercomplex propagation constant (Rosman, 1979), Ĥ0 – the 
external magnetic field hypercomplex r.m.s. value and 
 

2k k
kωσμα β= =                                     (19)  

 
– the attenuation (phase) constant of the electromagnetic field wave’s k-th order 
harmonic. Performing the above substitutions the hypercomplex moduli of the  
electromagnetic field’s state vectors expressions 
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are obtained. 
The hypercomplex Poynting vector, in a point situated on the plate 

surface, is 
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having the hypercomplex modulus 
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In relations (21) and (22) the asterisk characterize the hypercomplex conjugate 

of an element so that if ' '

0 0

ˆ 1 jk k k k
k k

'M M M
∞ ∞

= =

= +∑ ∑  then * '

0 0

ˆ 1 jk k k k
k k

''M M M
∞ ∞

= =

= −∑ ∑  

and consequently ( )* '2 '' 2

0

ˆ ˆ 1 .k k k
k

2MM M M
∞

=

= + =∑ M  

As it was proved in  a previous paper (Rosman, 1960) it is possible to 
define, in periodical, non-harmonic steady-state, a hypercomplex apparent 
power 
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where 

 

0 0

,   k
k k

P P Q Q
∞ ∞

= =

= = k∑ ∑                                         (24) 

 
represent the active, respectively the reactive power which correspond to all 
harmonics. If the hypercomplex apparent power on the conducting plate’s face 
surface area unit is considered then 
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allowing to perform the active power, P, and the reactive power, Q. 

When the external magnetic field’s fundamental term frequency is not 
to high, in his frequencies spectrum may be identified three domains in which 
the generated eddy currents are, from qualitative point of view, different 
namely: a) the domain [0, pf], with sufficiently low frequencies so that from 
series developments (6) may be retained only the first two terms; b) the domain 
[pf, qf], having only medium frequencies being necessary to take into account 
the series (6) in their totality; c) the domain [qf, ∞) which corresponds to the 
high order harmonics; the trigonometric functions may be approximated with 
the asymptotic values (9). 

 
3.1. Case of External Magnetic Field Harmonics Having Low Frequencies 

 
In this case the contribution to the eddy currents of external magnetic 

field’s harmonics of low order may be determined retaining only the two first 
terms of series (6). Consequently, having in view (7) it results 
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where 
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As well the Poynting vector hypercomplex modulus (s. (8)) is 
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Substituting in relations (26) and (29), expression (27) of ˆpγ  and taking 

into account relations (14),…,(16), expressions (26) and (29) become 
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Amplifying the fractions from (30) and (31) with the denominator’s 

hypercomplex conjugate (the same), 2
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Having in view relations (22),…,(25) the expressions of active and 

reactive power on area unit of plate’s surface and on the length unit of this one 
are 
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But (Ryžik et al., 1951) 
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so that relations (34), (35) become 
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3.2. Case of External Magnetic Field Harmonics Having Medium Frequencies 
 

In this case the hypercomplex moduli of electromagnetic field’s state 
vectors are determined using eqs. (20), substituting Ĥ0 with 
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In the same time 
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In view to obtain the expressions of active power, Ppq , and reactive 
power, Qpq , corresponding to the plate’s surface unit and to his length’s unit it 
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Taking into account relations (15), expression (43) becomes 
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so relation (42) may be written 
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Using relations (23),…,(25), the active power, 
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can be separaterd from the reactive power 
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both reported on area unit of the conducting plate's lateral surface. Relations 
(46) and (47) were established taking into account that 
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                       (48) 

 
3.3. Case of External Magnetic Field Harmonics Having High Frequencies 

 
In such a case the hypercomplex moduli of electromagnetic field state 

vectors inside the conducting plate may be determined with relations similar to 
(10) namely 
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where 
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and 
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As regard the Poynting’s vector hypercomplex modulus this one is 
 

2
0ˆˆ

2
q q

q

HdS
γ
σ

⎛ ⎞± =⎜ ⎟
⎝ ⎠

m                                          (52) 

and consequently the expressions of active and reactive powers reported to area 
unit of conducting plate’s lateral surface are 
 

2
0 ,   .

2 2q q k q
k q k q

P H k Q Hωμ ωμ
σ σ

∞ ∞

= =

= = 2
0 k∑ ∑                    (53) 

 
Evidently it is possible to retain in the above sums only the contribution of the 
harmonics q, q + 1,…, q < n < ∞. 
 



22                                                                Huho Rosman                                   
 

3.4. General Case 

nducting material used to make up the plate is considered linear. 
Consequently 

                     (54) 

 electri field’s h mplex 

 
In this case are considered all the external magnetic field’s harmonics, 

both the low, medium and high ones. The hypercomplex moduli of 
electromagnetic field’s state vectors as of the Poynting’s vector, and the 
expressions of active and reactive powers reported to area unit of the conducting 
plate’s lateral surface may be obtained applying the superposition theorem 
because the co
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As regards the inner c yperco modulus, if in 

relation (541) are substituted int 
ˆ ( )pE x , int 

ˆ
pq ( )E x  and int 

ˆ ( )qE x  by expressions 
(321), (411) and, respectively, (491), it results 
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In a similar way can be obtained the expression of the inner magnetic 
 . It is necessary to substitute in relation (54
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field’s hypercomplex modulus
x ,  by expressions (322), (412) and, respectively, 

(492) obtaining 

2), 

int 
ˆ ( )pH x , int Ĥ ( )pq int 

ˆ ( )qH x
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Using an analogous proceeding the following expression of eddy 

currents density hypercomplex modulus may be obtained 
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The expressions of active and reactive power refered to unit area and 

unit length of conducting plate’s lateral surface may be obtained applying this 
time again the superposition theorem namely 

 
,   .p pq q p pq qP P P P Q Q Q Q= + + = + +                          (58) 

 
Having in view relations (34), (46) and (531) it results, for the active power, the 
expression 
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  (59) 

 
Similarly, using relations (35), (47) and (532) one obtains, for the 

reactive power, the expression 
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 (60) 

 
In relations (59) and (60) were considered only the first n > q harmonics 

of the external magnetic field. 
 
 

3.5. Particular Case 
 

If the external magnetic field’s first harmonic is sufficiently high, the 
eddy currents induced in the conducting plate, in their totality, generate an 
electromagnetic field, having as hypercomplex moduli of state vectors 
expressions (10), where γ̂  is given by (17) and Ĥ by (18). Following this 
proceeding it results 
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As regards the hypercomplex modulus of Poynting’s vector, having in 

view (11), it results that 
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Consequently the active and reactive power refered to conducting plate’s lateral 
surface area unit and length unity are, in absolute values, 
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It is possible to define, in this particular case, a waves hypercomplex 

impedance [8] given by the ratio 
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which is independent with respect to the depth x. Were taken into account 
relations (61). 
 
 

4. Conclusions 
 

The eddy currents generated in a conducting plate having a rectangular 
section and situated in a homogeneous external magnetic field with periodical, 
non-harmonic variation in time, oriented tangentially to the plate’s faces, are 
determined. 

The utilized study method is based on a symbolic proceeding which 
permits to attach to each periodical, non-harmonic signal, a hypercomplex 
“image”. The hypercomplex moduli of electromagnetic field’s state vectors, 
Êint(x), Ĥint(x), Ĵ(x), x ∈ [0, d/2], where d is the conducting plate’s width, are 
determined. In the same time the hypercomplex modulus of Poynting’s vector 
in a point situated on the plate’s surface is determined too, which permits to 
obtain the expressions of the active and reactive powers corresponding to the 
lateral surface’s unit area and length unit of the conducting plate. The 
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determination of these hypercomplex moduli is performed separately for the 
low, medium and high harmonics of the external magnetic field. The final result 
is obtained applying the superposition theorem, considering that the plate’s 
material has a linear behaviour in electromagnetic field. 
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CURENŢII TURBIONARI ÎNTR-O PLACĂ CONDUCTOARE DE 
SECŢIUNE DREPTUNGHIULARĂ, ÎN REGIM PERMANENT PERIODIC 

NEARMONIC 
 

(Rezumat) 
 

Se studiază curenţii turbionari induşi într-o placă conductoare de secţiune 
dreptunghiulară, de un câmp magnetic omogen având o variaţie în timp periodică dar 
nearmonică. Metoda utilizată, care permite studiul, în acest caz, al curenţilor turbionari, 
se bazează pe un procedeu simbolic bazat pe reprezentarea mărimilor periodice 
nearmonice prin „imagini” hipercomplexe. Se determină modulii hipercomplecşi ai 
vectorilor de stare ai câmpului electromagnetic indus în interiorul plăcii, individual, 
pentru armonicile joase, medii şi, respectiv, înalte ale câmpului magnetic exterior. 
Expresiile rezultante ale vectorilor de stare hipercomplecşi ai câmpului se obţin 
utilizând teorema suprapunerii, considerând că mediul conductor al plăcii se comportă 
liniar în câmpul electromagnetic. 
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