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Abstract. The eddy currents in a conducting plate having a rectangular
section, situated in a homogeneous magnetic field, which is a periodical, non-
harmonic function of time, are studied. The utilized method, which permits to
study the eddy currents in the conducting plate, is based on a symbolic
proceeding representing the periodical, non-harmonic signals, through
hypercomplex “images”. The hypercomplex moduli of the electromagnetic
field’s state vectors are determined, individually, namely those produced by the
low, medium and high order harmonics of the external magnetic field. The
resultant expressions of the hypercomplex electromagnetic field’s state vectors
are obtained applying the superposition theorem having in view that the
behaviour of the conducting plate in electromagnetic field is considered a linear
one.
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1. Introduction

It is well known that if a massive conductor is placed in a variable in
time magnetic field in the conductor are generated currents named eddy
currents (Foucault). The most frequent cases studied in the specialty literature
are those concerning a conducting plate having a rectangular section or a
straight cylindrical conductor having a circular section, situated in a
homogeneous magnetic field harmonically variable in time (for instance
(Rosman et al., 1999)).

In what follows the eddy currents generated in a conducting plate,
having a rectangular section and situated in a homogeneous magnetic field, are
studied, when the magnetic field is variable in time periodically but not
harmonically. The conducting plate is considered infinite long, having the width
d (Fig. 1), the external magnetic field allowing the development in a Fourier
series

H,() = Z H0 coskwt + ZHO sin kwt. (1)
k=0 k=0

It is considered that this magnetic field is
tangentially oriented to plate’s faces.

When the external magnetic field has a
harmonically variation in time, the complex r.m.s. values
of the electromagnetic field induced in the plate vector
are (Mocanu, 1984)
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where H, is the complex r.m.s. value of vector
H, =k+2H, sin ot (3)
and
. ouc
y=a+ip, a=p= %2 (4)
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Here y represents the complex propagation constant of the electromagnetic wave
in the conducting medium, a — the attenuation constant and f — the phase
constant (a = f), u, o — the material constants of the conducting medium,
considered homogeneous, isotropic and without hereditary phenomenons.

Vectors E;(x, 1), Hix(x, ) being known, it is possible to determine
Poynting vector, for instance in a point situated on the conducting plate’s
surface. His complex expression is

dY _ H; )
S|+ |=Fp—2. . 5
_( 2} 70' yd )

At low frequencies it is possible to retain from hyperbolic trigonometric
functions series developments

m3 5 mZ m4
shm=m+—+—+...,, chm=l+—+—+..., (m=7x,7d/2), 6
6 ' 120 7 togtoo (m=rxrdf2), O

only the first two terms. In this case relations (2) and (5) become

2.2 2.2
yHyx 6+y°x 2+y°x
Ep(x)=—= T 5 H,,(x)=4H, 5
3o 8+y°d 8+y°d
- - (7
yHx 6+7/2x2
lint(x)z__ ' _2 P
3 8+yd
respectively
d Y H2d 24+y°d?
S(i— =F= - =, ®)
L 2 60 8+ y°d>

At high frequencies it is possible to approximate the hyperbolic
trigonometric functions with their asymptotic values

chm~e", shm=e", 9)
so that relations (2) and (5) become

ZEO 7(x=d/2)

E;(x)= _Te , Hy (x) = ﬂoez(x—dﬂ

LI =y H, (10)



12 Huho Rosman

respectively

2
§(iij:¢ZH° . (11)

o

In what follows the dispersion vs. time of material constants, o, u , is
neglected.

2. Study Method
It is advantageously to study the eddy currents in periodical non-
harmonic steady-state using a symbolic method based on representation of
periodical, non-harmonic signals, through hypercomplex images, proposed by

B.A.Rozenfeld(1949). This method consists in attaching to a periodical
non-harmonic signal, which admits the development in Fourier series

a(t) ZZA’; coskwt + ZAk sin kot , (12)
k=0 k=0

a hypercomplex “image”

2=ilkA,L +ijkA);, (13)

where functions 1, , j; are orthonormalized. The so defined algebra is
commutative, representing a direct sum of real number field (generated by 1¢)
and the numberable set of complex numbers set (generated by the pair 14, ji),
the unity element of this algebra being

Zlk =1,. (14)
k=0

The relations

11% :11(’ .]1% :_1k5 lkjk :jklk :jk’ 1plq =1q1p =jqu qujp =

o (15)
=1,3,=1,1,=0, (p;tq),

are satisfied too.
Having in view that the symbolic identity
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Z Jkka) , me |, (16)
k=0

is verified by the hypercomplex “images”, it results that this symbolic method
posses the advantage of ‘“‘algebrization” of differential operations with respect
to time, analogous with the one presented by the symbolic method of complex
“images” used in the case of harmonic steady-state study.

A variant of this symbolic method was exposed by the author in a
previous paper (Rosman, 2010).

3. Hypercomplex Vectors E;,(x), Hi.(x), S(d/2)

If the state hypercomplex vectors of an electromagnetic field, in
periodical, non-harmonic steady-state, in a point situated at distance x € [0 d/2]
from the conducting plate’s (having a rectangular section) symmetry axis, are
denoted with Elm(x) and Hmt(x) when the plate is situated in a homogeneous,
periodical but non-harmonic magnetic field, having the expression (1), d being
the plate’s width, the expressions of these hypercomplex vectors are, from a
formal point of view, analogous to relations (2), being sufficiently to substitute
in these relations yand H, with

7/:2 1 © O +]k,6’k fZJkka)a,u (17)
k=0

o0

and, respectively,

Hy = (L Hoy +icHy ) (18)

k=0

where 7 is the hypercomplex propagation constant (Rosman, 1979), H, — the
external magnetic field hypercomplex r.m.s. value and

lkaao,
ak = . = T/l (19)

— the attenuation (phase) constant of the electromagnetic field wave’s k-th order
harmonic. Performing the above substitutions the hypercomplex moduli of the
electromagnetic field’s state vectors expressions
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Ep(=-T00 S =1, S =71, 2 20)
o 2l ch 7% ch 7%
2 2 2

are obtained.
The hypercomplex Poynting vector, in a point situated on the plate

surface, is
~(d) =~ d) ~« (d
S| —|=E._ |—|xH | —]|, 21
(2) 1nt(2) 1nt(2J ( )

having the hypercomplex modulus

9ot

In relations (21) and (22) the asterisk characterize the hypercomplex conjugate

of an element so that if MzZlkM,; +ijM,'; then M =Z:1,(M,'c —ijM,i
k=0 k=0 k=0 k=0
and consequently MM~ = Zlk (Mk2 +M;? ) =M.
k=0
As it was proved in a previous paper (Rosman, 1960) it is possible to

define, in periodical, non-harmonic steady-state, a hypercomplex apparent
power

§=D LB+ 50, (23)
k=0 k=0

where

PZZ‘P’“ Q=ng (24

represent the active, respectively the reactive power which correspond to all
harmonics. If the hypercomplex apparent power on the conducting plate’s face
surface area unit is considered then

3 =§(1j, (25)
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allowing to perform the active power, P, and the reactive power, Q.

When the external magnetic field’s fundamental term frequency is not
to high, in his frequencies spectrum may be identified three domains in which
the generated eddy currents are, from qualitative point of view, different
namely: a) the domain [0, pf], with sufficiently low frequencies so that from
series developments (6) may be retained only the first two terms; b) the domain
[pf, qf], having only medium frequencies being necessary to take into account
the series (6) in their totality; c) the domain [gf, o) which corresponds to the
high order harmonics; the trigonometric functions may be approximated with
the asymptotic values (9).

3.1. Case of External Magnetic Field Harmonics Having Low Frequencies
In this case the contribution to the eddy currents of external magnetic

field’s harmonics of low order may be determined retaining only the two first
terms of series (6). Consequently, having in view (7) it results

4}7;xH0p.6+}?;x2 ()= Al +7?f,x2
3o 8+;?f,d2’ oy "8+ 72d

E'intp(x) ==

21 2.2 (26)
4y, xH,, ‘ 6+7,x

J ()=- ,
R S
where
p
7y :Z(l 27 +Jkﬁk ZJkkwo'ﬂ (27)
k=0
and

P
Aoy =Y (1 Hy, +icH,, ). (28)

=0
As well the Poynting vector hypercomplex modulus (s. (8)) is

~2 2 ~2 72
- dH;, 24+7,d
S, (iﬁ)ziyp . —. (29)
60 8+;/pd
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Substituting in relations (26) and (29), expression (27) of 7, and taking
into account relations (14),...,(16), expressions (26) and (29) become
21 k*w’ou®x +2Jk2ka),u
1ntp (X) 4XH H
Zl 8+ Z Jklca)O',ua’2
= k=0
P P
1,8 4k
: . S g dheons (30)
Himp(x)=H0p » » 5
z 1,8+ z Jkooud?
k=0 k=0
P
Zl Koo u*x +ij2ka)a,u
lmp (x)= 4xH k=0 > > —~ R
> 1,8+ jikooud?
k=0 k=0
respectively
J 7 21 kKoo’ yrd* - Z i, 24koud
S |5 |=F L =2 G1)
2 6 ) 5
ZlkS + ijka)qud
k=0 k=0

Amplifying the fractions from (30) and (31) with the denominator’s

p p
hypercomplex conjugate (the same), z 1,8— z Jykooud ? it results

k=0 k=0
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il 2k* @’ o <4x2 —d’ ) - ijkka),u(m +kK oo’ 1 d? )

mtp(x) 4XH0 p = ]
64+Zk20)202,u2d4
k=0
P P
Zlk (64+k2a)20'2,uzalzx2 ) + ijSka)o;u(4x2 —dz)
]:Iintp (x) :ﬁOp A P = > (32)
64+Z:k2a)20'2,uza’4

k=0

21 W 1 (45 - d”) —f jkoou(16+ K o’ o’ 1P d”

mlp ()C) 4)CH0 p Lo 5
64+Zkza)20'2,uzd4
k=0
respectively
. p ng %1 16k20)20,ud2 + Z]kka),ud(192 + ko’ 02y2d4)
S, (i5j=$ . .(33)
64 + Zk2w202y2d4
k=0

Having in view relations (22),...,(25) the expressions of active and
reactive power on area unit of plate’s surface and on the length unit of this one
are

p
> 8w’ oud) k’
P - HOp k=0
=3 R (34)
64+w’c’ 1fd* Yk
k=0

respectively

p P
5 a),ud[l922k+a)20'2,u2d42k3j
_H,, k=0 k=0
0,=—" - : (35)
64+w’c’ )id> )y Kk’
k=0

But (Ryzik et al., 1951)
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2
+1
k> =————, (36)

Zk:p(erl) - kzzp(p+1)(2p+1)
k=0 2 k=0 k=0

so that relations (34), (35) become

_ng 8p(p+l)(2pJrl)a)20,ud2
P73 3844 p(p+1)(2p+l)0icttdt’

(37

respectively

H2, p(p+1)aud[168+ p(p+1)a’c id* |
P 4 : 384+p(p+1)(2p+1)a)202ﬂ2d4

3.2. Case of External Magnetic Field Harmonics Having Medium Frequencies

(38)

In this case the hypercomplex moduli of electromagnetic field’s state
vectors are determined using eqgs. (20), substituting Hy with

q q
Hopy =D L Hy +Y iHy (39)
k=p k=p
and 7 with
q q
Poa = | ikoou =Y (1, + i) (40)
k=p k=p
so that
R 7.Hy shp x . . chp x
Eintpq (x) — Pq rq qu , Hintpq (x) :H()pq qu ,
? ch~2 ch~2
(41)
. .~ shy,x
Jpq (x) = 7qu0pq N
ch Vg
2

In the same time
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VX
R 2 Sh Prq
S d __7qu0pq ) 2 4
rq - A : (42)
2 c V0l
Ch Pq
2

In view to obtain the expressions of active power, P,, , and reactive
power, O,, , corresponding to the plate’s surface unit and to his length’s unit it

is necessary to express the fraction sh(ﬁpqd / 2) / ch(j?pqd/ 2) in a canonic

hypercomplex form. Having in view (40) it results that

q 9
@ ﬁpqd sh[Zlkade + sh[ijade

: (43)
7
T ch[Zl a, J+ch[ZJkak J
Taking into account relations (15), expression (43) becomes
q
qu Zlksh o d Hch o,d ijsm a,d Hcos(a,d)
_ = Ik (44)
7pqd q q ?
chT Hch(ald)+ncos(ald)
=p =p

so relation (42) may be written
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& d)__ |ou,
5o (1)o7 Pt

2 20
q q q
ZIk\/E sin(akd)Hcos(ald) - sh(akd)Hch (d)
- B B
x . ; — (45)
Hch(a,d) +Hcos(ald)
I=p I=p
q q q
ij\/E sin(akd)Hcos(a,d) + sh(a,d)Hch(ald)
k=p I=p I=p
1k Ik
B q q
Hch(a,d) +Hcos(ald)
I=p I=p

Using relations (23),...,(25), the active power,

9 q q

Z\/% sin(akd)Hcos(a,d) —sh(akd)Hch(a,d)

d oY =r 4 4
SO
Hch(a,d) + Hcos(a,d)

I=p I=p

can be separaterd from the reactive power

q q

Jk sin(akd)Hcos(a,d)+sh(akd)Hch(a,d)

o, 2 B ZHOP g q q » (47)
Hch(a,d) + Hcos (ed)

I=p I=p

MQ

=~
1l

both reported on area unit of the conducting plate's lateral surface. Relations
(46) and (47) were established taking into account that
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ch(1,¢)=ch ¢, sh(l,¢)=1,sin g,

(48)
Ch(jk(/)) =C0s @, Sh(jk(/’) =Ji sin @.

3.3. Case of External Magnetic Field Harmonics Having High Frequencies
In such a case the hypercomplex moduli of electromagnetic field state

vectors inside the conducting plate may be determined with relations similar to
(10) namely

a j} HO 7. (x—d/2 ~ o 7. (x—d/2
By (1) == 220 ) ()=, ), )
5 ~ (x-d/2)
Jq (x) __7/q Og D
where
I:[oq = (lkH(') +ij8) (50)
k=q
and

7, = /ijkkwow:k (1, + ). (51)
=q =q

As regard the Poynting’s vector hypercomplex modulus this one is

N d qu2
+ =

and consequently the expressions of active and reactive powers reported to area
unit of conducting plate’s lateral surface are

\/EHZ Z\f 0, = “’”HZ Z\f (53)

Evidently it is possible to retain in the above sums only the contribution of the
harmonics ¢, g +1,..., g <n <o,
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3.4. General Case

In this case are considered all the external magnetic field’s harmonics,
both the low, medium and high ones. The hypercomplex moduli of
electromagnetic field’s state vectors as of the Poynting’s vector, and the
expressions of active and reactive powers reported to area unit of the conducting
plate’s lateral surface may be obtained applying the superposition theorem
because the conducting material used to make up the plate is considered linear.
Consequently

Eint (X) = Eintp (x) + Eintpq (X) + Eint q (X),

I:Iint (x) =H.

int p

() + Hip py () + Hypy, (%), (54)

J(x)=J,(x)+J,, (x)+ J, (x).

As regards the inner electric field’s hypercomplex modulus, if in
relation (54,) are substituted Eim » (), Eim g (X) and Eimq(x) by expressions
(32)), (41)) and, respectively, (49,), it results

V4 P
Z:l,{Zkza)zo;u2 (4x2 —d2)—ijka)y(l6+k2a)20'2y2d2>
Eint ()C) :4x[:[0p = p = +
64+ Zk2w202/42d4
k=0

(55)

+7qu0pq . Sh?pqx _7;qH0q eiq(x—d/z)

o Vd O

In a similar way can be obtained the expression of the inner magnetic
field’s hypercomplex modulus. It is necessary to substitute in relation (54,),

I:Iintp ()C) ’ I:[intpq ()C) ’ I:Ii
(49,) obtaining

(x) by expressions (32,), (41,) and, respectively,

nt g
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V4 D
Zlk (64 + koo’ 1hd*x? ) - ij 8kcoo;u(4x2 —-d? )
Hiyy (x) = 4xH,, 4= RE— +
64+ Y kKw’c’utd?
2 5

. chy x .
P4 7q(x—d/2)
+Hy,, ——— p +Hye .

Using an analogous proceeding the following expression of eddy
currents density hypercomplex modulus may be obtained

ilkzkzwzoﬂ/ﬂ (4 —d2)—ijkka)oy(l6+k2w202yzd2)
J(x)=4xH,, *= k=0 _

p
64+ Zkza)zo'zuzd4
k=0 67

A Sh?pqx Ny Ta(xd)2)
g OPqW_yq Oqeq
ch?-
2

The expressions of active and reactive power refered to unit area and
unit length of conducting plate’s lateral surface may be obtained applying this
time again the superposition theorem namely

P=Pp+qu+Pq, Q=QP+qu+Qq. (58)

Having in view relations (34), (46) and (53)) it results, for the active power, the
expression
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_ng 8p(p+1)(2p+1) 0’0’ Wid’

3 384+ p(p+1)(2p+l)0’c’ id

q q q
Z\/Z sin(akd)Hcos(a,d)—sh(akd)Hch(ald)
o, s i
2 * #*
P H, q q £ (59)

Hch(a,d) + Hcos(a,d)
I=p I=p

OU L N
+‘/%H0quz_q:\/;

Similarly, using relations (35), (47) and (53,) one obtains, for the
reactive power, the expression

ng p(p+l)a)ﬂd[768+p(p+1)w202/u2d2]

4 384+ p(p+1)(2p+1)0’c’ yPd?

q q q

Z\/E sin(akd)Hcos(a,d)+sh(akd)Hch(a,d)

k=p I=p I=p

" ;’—;‘ngq — - - + (60)
Hch(a,d)+Hcos(ald)
I=p I=p
OH 12 \

+ EH()!’;\/Z

In relations (59) and (60) were considered only the first # > g harmonics
of the external magnetic field.

3.5. Particular Case

If the external magnetic field’s first harmonic is sufficiently high, the
eddy currents induced in the conducting plate, in their totality, generate an
electromagnetic field, having as hypercomplex moduli of state vectors
expressions (10), where 7 is given by (17) and H by (18). Following this
proceeding it results
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A

H N
B (x)==220/ ) (0= B, G = —p A, (61)

o

As regards the hypercomplex modulus of Poynting’s vector, having in
view (11), it results that

ALY
S(J_ij:ﬂHO . (62)
S (o2

Consequently the active and reactive power refered to conducting plate’s lateral
surface area unit and length unity are, in absolute values,

iy e 0=2En3 Y k. (63)
o k=0 26 k=0

It is possible to define, in this particular case, a waves hypercomplex
impedance [8] given by the ratio

. Ein X I kw ijﬁ/4
R (64)
Hint(x) o o

which is independent with respect to the depth x. Were taken into account
relations (61).

4. Conclusions

The eddy currents generated in a conducting plate having a rectangular
section and situated in a homogeneous external magnetic field with periodical,
non-harmonic variation in time, oriented tangentially to the plate’s faces, are
determined.

The utilized study method is based on a symbolic proceeding which
permits to attach to each periodical, non-harmonic signal, a hypercomplex
“image”. The hypercomplex moduli of electromagnetic field’s state vectors,
Ein(x), Hie(x), J(x), x € [0, d/2], where d is the conducting plate’s width, are
determined. In the same time the hypercomplex modulus of Poynting’s vector
in a point situated on the plate’s surface is determined too, which permits to
obtain the expressions of the active and reactive powers corresponding to the
lateral surface’s unit area and length unit of the conducting plate. The
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determination of these hypercomplex moduli is performed separately for the
low, medium and high harmonics of the external magnetic field. The final result
is obtained applying the superposition theorem, considering that the plate’s
material has a linear behaviour in electromagnetic field.
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CURENTII TURBIONARI iN”l:R:O PLACA CONDUCTOARE DE
SECTIUNE DREPTUNGHIULARA, IN REGIM PERMANENT PERIODIC
NEARMONIC

(Rezumat)

Se studiazd curentii turbionari indusi intr-o placa conductoare de sectiune
dreptunghiulard, de un camp magnetic omogen avand o variatie 1n timp periodica dar
nearmonicad. Metoda utilizata, care permite studiul, In acest caz, al curentilor turbionari,
se bazeaza pe un procedeu simbolic bazat pe reprezentarea marimilor periodice
nearmonice prin ,,imagini” hipercomplexe. Se determind modulii hipercomplecsi ai
vectorilor de stare ai cdmpului electromagnetic indus in interiorul placii, individual,
pentru armonicile joase, medii si, respectiv, inalte ale campului magnetic exterior.
Expresiile rezultante ale vectorilor de stare hipercomplecsi ai cdmpului se obtin
utilizand teorema suprapunerii, considerand ca mediul conductor al placii se comporta
liniar In campul electromagnetic.
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