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Abstract. The implementation of a real-time frequency equalizer is 
proposed. The system will perform adaptive filtering of the original signal 
following an idea derived from LMS algorithm. The main difference compared 
to classical least mean squares (LMS) is that the adaptation technique is 
implemented in the frequency domain. Three different equalizing methods will 
be proposed, and their advantages and drawbacks will be presented. 
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1. Introduction 
 
The characteristics of an audio signal are modified by passing through 

any channel, so that a modified version of the original sound will be heard. The 
sound will not only reach the ears directly from the source, but also through 
reflections from objects and walls. The signal distortion due to room acoustics 
can be modeled by a filtering operation. We use room impulse response (RIR) 
to describe the acoustical properties of a room. If someone filters the received 
signal with a filter that is the inverse of RIR, then he will compensate for the 
room introduced discrepancies and recover the original signal. This process is 
known as equalization. 
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In what follows we will propose a frequency equalizer method that aims 
at minimizing the errors between a target signal and the original filtered signal. 
Section 2 will present the commonly used equalization techniques, and section 
3 will describe the theoretical background of the implemented equalizer. 
Experimental results will be shown in section 4 and section 5 will conclude the 
paper. 

 
2. Adaptive Equalizers Overview 

 
If the communication channel is known and static, then we can easily 

filter the received signal with the inverse channel filter and obtain the original 
signal. In practice, the channel response is not constant in time. To cope with 
this we need to use an equalization type that periodically updates the filter 
coefficients in order to track a time-varying communication channel. This 
method is known as adaptive equalization. Periodic adjustments are accompli-
shed by periodically transmitting a short training sequence of digital data known 
by the receiver and the filter updates its coefficients based on this sequence. The 
filter coefficients can also be updated based on the signal statistics or by trying 
to minimize a certain error value. Fig. 1 presents the basic scheme of an 
adaptive equalizer. Signal x is filtered with the filter f to match the target signal, 
d. The adaptation algorithm has as inputs, x, d and the error, e, and acts to 
minimize this error. 

 

 
Fig. 1 – Block diagram of an adaptive filter. 

 
If we consider the static case for Fig. 1, we can easily find the ideal 

value of filter coefficients by using the equation (Manolakis et al., 2002) 
 

1
x dx
−=f R r ,                                                 (1) 

 
where Rx is the correlation matrix of the tap-input vector, x[n], and rdx is the 
crosscorrelation vector between the tap-input vector, x[n] and the desired 
response, d[n], of a certain length. 

Finding  f needs the inversion of the matrix Rx , which can be unpracti-
cal in many cases because of the high amount of computations required. 
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Another way to address this problem is to use iterative algorithms that starts 
from an initial guess of the optimal filter and converges to a solution that is 
close to the optimal one. So the following equation may be obtained (Haykin, 
2002): 

 

1n n µ+ = +f f p .                                         (2) 
 

The vector p is an update direction vector that we should choose 
adequately, along with a positive scalar, μ. The scalar, μ, is called the step-size 
parameter since it affects how small or how large the correction term is. n 
represents the current time index. 

In order to guarantee convergence of fn to f, certain conditions must be 
imposed on the step size namely (Haykin, 2002).  
 

+dx x n=p r R f ,                                          (3)  
 

max

20 µ
λ

< < ,                                           (4) 

 
where λmax is the highest eigenvalue of correlation matrix Rx. Except from 
computation bothersome we need to know the exact signal statistics (auto and 
cross correlation functions). But we can use stochastic gradient algorithms that 
have learning mechanism, which enables them to estimate the required 
statistics. Moreover, these methods present a tracking mechanism that allows 
them to follow the variations in the signal statistics and makes them applicable 
to the non-stationary case. Least mean squares (LMS) algorithm is one of the 
branches of stochastic gradient algorithms.  

In this method we estimate the correlation, Rx,n+1 , and cross-correlation,  
rdx, n+1 , by observing processes x[n] and d[n] and replacing the statistic averages 
by time averages. That is, we take 

 

, 1 1 1
H

x n n nx x+ + +R = ,                                         (5)                     
 

, 1 1[ 1]r =dx n nd n x+ ++ ,                                     (6) 
 

where H stands for Hermitian. 
We can find pn using following relation: 

 

pn  ≈ 1 1[ 1] fH
n nx d n x+ + + −  .                                     (7) 

 
Afterwards, fn+1 can be found by applying expression 
 

[ ]1 1 11f  f fH
n n n n nx d n xµ+ + + = + + −  .                        (8) 
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If the statistics of the signal are changing slowly with respect to the 
sampling frequency, then we can have a better approximation for pn and use it 
as a function of xn and d[n] instead of xn+1 and d[n +1]. The result for slow 
changing signal,  fn+1 , is 
 

1 [ ]f   f  fH
n n n n nx d n xµ+  = + −                                       (9) 

 
and f0 is an initial guess. 
 

3. Frequency Domain Equalization 
 

Algorithms similar to LMS can also be implemented in the frequency 
domain. The equalizers of this type have programmable taps for several 
frequency bands that adjust magnitude and phase of a received signal to a 
desired one. An adaptive frequency equalization system consists of the 
following components: a hard decision circuit configured to select ideal values 
using equalized information; a frequency response circuit configured to 
determine frequency response update values using ideal values and the received 
signal; an adjust circuit configured to update stored frequency response 
information using frequency response update values during a transmitted frame, 
and to update programmable equalizer taps using stored frequency response 
information. The transition from the time domain to the frequency domain is 
usually realized with help of the Fourier transform. 

Often it is desired that an audio signal be modified as a function of time 
and frequency. A way of doing this is to divide a signal into blocks and to apply 
a Discrete Fourier Transform (DFT) to each block. But the use of this method 
has a side effect, that is discontinuities at block boundaries. To alleviate this 
problem instead of hard boundaries, overlapping windowing is used to separate 
signal blocks. This type of frame-wise DFT processing is called Short Time 
Fourier Transform (STFT) (Vaidyanathan, 1993). 

Like standard LMS, the equalizer proposed in this paper aims at 
minimizing the expected mean square error (MSE) between a desired output 
signal, d[n], and the actual output, y[n]. The y signal is obtained from the input 
x[n] by filtering with an adaptive filter, while d is x filtered with an unknown 
filter (which can model a room impulse response for example). Firstly, the time 
signal will be divided into overlapped frames (in order to compute the STFT). 
Fig. 2 presents the basic model of this adaptive filter implementation. The 
innovation compared to LMS is that the values used for error minimization are 
situated in frequency-domain (Fernandes et al., 2004) (in the following, capital 
letters will denote frequency-domain values, while index n will be used for time 
and k for frequency). After computing the spectrum of each frame (consisting of 
1024 values) we will divide the frequency values in 16 different sub-bands 
(Pinto et al., 2006; Kahrs et al., 1998), covering the range 0…Fs/2 (where Fs is 
the sampling frequency). Because the human audio system has different 
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sensitivities for different frequency values, the number of samples will not be 
the same for all sub-bands. Table 1 presents the number of samples per sub-
band, the minimum and maximum sub-band frequencies and the indexes of the 
sub-band samples (for Fs = 44,100 samples/s). 

 
Fig. 2 – Adaptive filter model. 

 
Table 1 

Sample Distribution for Each Frequency Sub-Band (Fs = 44,100 Hz) 
Sub-
band 

Fmin 
Hz 

Fmax 
Hz 

Bandwidth 
Hz 

Number of 
samples 

Lowest 
bin 

Highest 
bin 

  1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
10 
11 
12 
13 
14 
15 
16 

          0 
      172 
      345 
      517 
      689 
      947 
  1,292 
  1,723 
  2,326 
  3,101 
  4,048 
  5,599 
  7,494 
  9,905 
13,006 
16,968 

      172 
      345 
      517 
      689 
      947 
  1,292 
  1,723 
  2,326 
  3,101 
  4,048 
  5,599 
  7,494 
  9,905 
13,006 
16,968 
22,050 

   172.3 
   172.3 
   172.3 
   172.3 
   258.4 
   344.5 
   430.7 
   602.9 
   775.2 
   947.5 
1,550.4 
1,894.9 
2,411.7 
3,100.8 
3,962.1 
5,081.8 

   4 
   4 
   4 
   4 
   6 
   8 
  10 
  14 
  18 
  22 
  36 
  44 
  56 
  72 
  92 
118 

    1 
    5 
    9 
  13 
  17 
  23 
  31 
  41 
  55 
  73 
  95 
131 
175 
231 
303 
395 

   4 
    8 
  12 
  16 
  22 
  30 
  40 
  54 
  72 
  94 
130 
174 
230 
302 
394 
512 

 
The 512 samples corresponding to the negative part of the spectrum are 

similarly grouped. 
LMS aims at minimizing a cost function, J, which in our case will be 

 

{ }2( ) ;  ( ) ( ) ( )J E E k E k D k Y k= = − .                              (10) 
 

An equivalent expression will be obtained by splitting the value among the 16 
sub-bands 

( ) ( ){ } { }min max

16
2

1

,  l l l l l
l

J E D k Y k k k k k k
=

= − = ≤ ≤∑ .            (11) 

 

minlk and 
maxlk are the minimum and the maximum values of the sample indexes 

(last two columns in Table 1). 
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For each sub-band, l (with l = 1…16), we will try to find out the 
coefficient w(l) which minimizes the total cost function. If index k belongs to 
sub-band l, then 

 

( ) ( ) ( )Y k w l X k=                                           (12) 
 

and the cost function becomes 
 

( ) ( ){ } { }min max

16
2

1

( ) ,  .l l l l l
l

J E D k w l X k k k k k k
=

= − = ≤ ≤∑        (13) 

 
3.1. Method 1: Real Coefficients, Using the Complex Values of X and D (M1) 

 
The values of w(l) will be determined to minimize J 

 

{ } { } { }

{ } { }( )

2 * *

2 *

2 ( ) ( ) ( ) ( ) ( ) ( )
( )

2 ( ) ( ) 2 ( ) ( ) .

l l l

l l

k k k

k k

J w l E X k E X k D k E X k D k
w l

w l E X k e E X k D k

∂
= − − =

∂

= − ℜ
   (14) 

 

Because the derivative of J with respect to w(l) does not depend on 
other sub-band coefficients, we will compute w(l) for each sub-band indepen-
dently. 

To each coefficient will be assigned an initial value, and will be succes-
sively updated. Given its value, wn(l), the following value will be determined: 

 

1
1( ) ( ) ,
2 ( )n n

n

Jw l w l
w l

µ+
∂

= −
∂

                                 (15) 
 

where ( )nJ w l∂ ∂  represents the update direction and μ the step size. The value 
of μ will be computed such as the error at iteration n + 1 is lower than at itera-
tion n for each sub-band, En + 1 < En , and consequently 

{ } { } { }
{ } { } { }

2 22 * *
1 1

2 22 * *

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

l l l

l l l

k n k n k

k n k n k

E D k w l E X k w l E X k D k X k D k

E D k w l E X k w l E X k D k X k D k

+ ++ − + <

< + − +
 

i.e. 

{ } ( ){ }
{ } ( ){ }

22 *
1 1

22 *

( ) ( ) ( ) 2 ( ) ( )

( ) ( ) ( ) 2 ( ) ( )

l l

l l

n k n k

n k n k

w l E X k w l E e X k D k

w l E X k w l E e X k D k

+ +− ℜ <

< − ℜ
                 (16) 

or 

{ } { }2 *
1( ) ( ) ( ) 2 ( ) ( ) .

l ln n k kw l w l E X k E e X k D k+   + < ℜ     
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By substituting (15) into (16) the maximum step size 
 

( ){ }
{ }

( ){ } { }

*

2

max 2*

2 ( ) ( )
2 ( )

( )

( ) ( ) ( ) ( )

l

l

l l

k
n

k

k n k

E e X k D k
w l

E X k

E e X k D k w l E X k
µ

ℜ
−

=
ℜ −

               (17) 

 
is obtained. 

Because the sets used for coefficient updating (X(k) and D(k)) are finite, 
we will use the following estimates for the expectations: 

 

( ){ } ( )
max min

1 ;  1
l

l

k l l l l
k

E X k X k N k k
N

= = − +∑ .               (18) 

 
Having in view that the signal is correlated, we will only do one 

iteration per frame. Moreover, the initial value for each frame will be the value 
obtained for the previous frame. As a result, the coefficients will be updated 
only once for each 1,024 samples (similar results are obtained if we update the 
coefficients every two or three frames). This implementation allows for few 
computations and is well suited for real-time implementation.  

After updating w(l) we will compute Y(k) and perform an inverse STFT 
to return in time domain. The obtained samples will be stored in a buffer from 
which they will be played. 

The main drawback of the above mentioned method is that the w 
coefficients are real and they cannot compensate for phase difference between X 
and D (complex signals). As a result, there will be high differences between the 
reconstructed signal, Y, and the target one in the frequency bands where phase 
shifts occur in the unknown filter (several figures describing this will be shown 
in the section 4 of this paper). One way to compensate this discrepancy is to use 
complex values for w. 

  
3.2. Method 2: Complex Coefficients, Using the Complex Values of X and D (M2) 

 
Considering (Haykin, 2002) 

 
( ) ( ) j ( )w l a l b l= + ,                                      (19) 

 
It results that 
 

{ } { }2*j 2 ( ) ( ) 2 ( ) ( )
( ) ( ) ( ) l lk k

n n n

J J J E X k D k w l E X k
w l a l b l
∂ ∂ ∂

= + = − +
∂ ∂ ∂

; (20) 

 
the max-step-size is 
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{ }
{ }

{ } { }

* *

2

max 2*

2 ( ) ( ) ( ) ( )
2 ( )

( )

( ) ( ) ( ) ( )

l

l

l l

k
n

k

k n k

E X k D k X k D k
w l

E X k

E X k D k w l E X k
µ

+
−

=
−

.                (21) 

 
The price that has to be paid for the more accurate adaptive filter 

response is an increase in complexity, because real additions and multiplications 
are replaced with complex ones. 
 

3.3. Method 3: Real Coefficients, Using the Absolute Values of X and D (M3) 
 

Another way to determine the adaptive filter is to use only the absolute 
values of X and D (therefore the phase difference will not influence the adaptive 
filter coefficients). In this case the update direction will become 
 

{ } { }22 ( ) ( ) 2 ( ) ( )
( ) l lk k

n

J w l E X k E X k D k
w l
∂

= −
∂

             (22) 

 
and the maximum step size is  

 
{ }

{ }
{ } { }

2

max 2

2 ( ) ( )
2 ( )

( )

( ) ( ) ( ) ( )

l

l

l l

k
n

k

k n k

E X k D k
w l

E X k

E X k D k w l E X k
µ

−

=
−

.               (23) 

 
In all cases the step size will be chosen as t μmax , where t ∈ (0, 1). 
 

4. Simulation Results 
 

4.1. Simulation Setup 
 

The proposed frequency equalizer was implemented in Matlab. The 
original signal was read from a “.wav” file. The target signal was obtained from 
the original filtered by a FIR filter. Three filter types were used, with the 
frequency response (magnitude and phase) given in Fig. 3. 

A windowed overlapped STFT was applied to the original and the 
target signals. The used window is a Kaiser-Bessel window (Oppenheim et al., 
1999), and its shape depends on an input parameter (the higher the parameter 
value is, the larger the flat area in the center of the window is). The synthesis 
window is identical to the analysis one. 
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Afterwards, the equalization was done in frequency domain by the three 
methods presented in section 3. The equalization will be done in real-time, i.e. 
while a frame is being equalized, the previous ones are already being played. 
 

 
Fig. 3 – Low pass filter (a); band pass filter (b); high pass filter (c). 
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4.2. Results 

 
The Figs. 4,…,6 present the adaptive filter response for the low-pass, 

band-pass and high-pass approximations, respectively, for each of the 
approximation methods (M1: real coefficients, using the complex values of X 
and D; M2: complex coefficients, using the complex values of X and D; M3: 
real coefficients, using the absolute values of X and D). The responses are 
shown after the adaptive filters have converged. The quantities in the plots are: 
x-axis: Normalized Frequency, y-axis: Magnitude [dB]. 

 

0 0.2 0.4 0.6 0.8 1-100

-50

0

50

 
a 

0 0.2 0.4 0.6 0.8 1-100

-50

0

50

 
b 

0 0.2 0.4 0.6 0.8 1-100

-50

0

50

 
c 

Fig. 4 – Adaptive filter responses using M1: low pass filter approximation (a); band pass 
filter approximation (b); high pass filter approximation (c). 

 
 

In the low-pass and band-pass approximations we observe some 
important differences with respect to the target filters (from Fig. 4) in the bins 
containing the normalized frequencies of 0.05 and 0.15. A possible explanation 
for this phenomenon is that real values for the coefficients cannot compensate 
the phase differences between X and D. Therefore, even if the X and D values 
have similar amplitudes, if their phases are different, the coefficient value will 
be low. 

Considering the Figs. 4,…,6, we can say that if we use the absolute 
values of X and D to compute the coefficient values, we obtain a better result 
than using the first method. The results are comparable to those obtained by M2, 
but without any increase in the required computations. We did not perceive any 
auditory differences in the equalized signal between the three methods. 
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Fig. 5 – Adaptive filter responses using M2:  low pass filter approximation (a); band 
pass filter approximation (b); high pass filter approximation (c). 
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Fig. 6 – Adaptive filter responses using M3:  low pass filter approximation (a); band 
pass filter approximation (b); high pass filter approximation (c). 

 
The filter convergence time is the same for all methods, and depends on 

the chosen step-size. A larger value for the step-size allows for shorter 
convergence time, but there is a higher coefficient fluctuation when 
convergence is reached. Smaller step values will require more iterations to reach 
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the convergence, but the values will be more stable. A comparison between the 
three equalization methods can be observed in Table 2.  

 
Table 2 

Complexity Comparison between the Three Proposed Equalization Methods 
 

Coefficient update 
(operations) 

 

Y = wX 
(operations) 

Subjective 
reconstruction 

accuracy 
Case Real Complex Real Complex  
M1 4N + 10 0   1,024          0  AVERAGE 
M2 2N + 5 N + 5          0   1,204 GOOD 
M3 4N + 10 0   1,024          0 GOOD 

 
The second and third columns show the number of operations required 

for the update of one coefficient (N is the number of samples in the frequency 
bins corresponding to that coefficient). Columns 4 and 5 show the number of 
operations required for determining the adaptive filtered signal for one frame 
(1,024 samples). The averaging computations were not considered. 

From Table 2 we can see that the best results (in terms of both quality 
and complexity) are obtained when we only consider the absolute values of X 
and D. 

 
5. Conclusions 

 
A derivation of the least mean squares algorithm in the frequency 

domain is proposed. The used techniques allow the implementation of an 
efficient equalizer that takes advantage of the fact that filtering or convolution 
in time is equivalent to multiplication in frequency. Because the Fourier 
Transform of a signal can be easily computed by means of FFT, there is no 
difficulty to translate to the frequency domain. Based on these principles, we 
proposed a method that allows, for good equalization, results without requiring 
a large amount of computations. 
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EGALIZATOR ADAPTIV ÎN DOMENIUL FRECVENŢĂ 
 

(Rezumat) 
 

Se propune un egalizor în domeniul frecvenţă, în timp real. Sistemul realizează 
filtrarea adaptivă a semnalului original, pe baza unei idei ce derivă din algoritmul LMS, 
diferenţa faţă de acesta constând în faptul că adaptarea se obţine în domeniul frecvenţă. 
Sunt propuse trei tehnici de egalizare, prezentându-se avantajele şi dezavantajele 
fiecăreia. 



 




