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Abstract. The paper presents several results concerning the stability of 
double grid coupled Cellular Neural Networks (CNN’s) linearized in the central 
linear part of the cell characteristic for variable parameters using Gershgorin’s 
theorem. It is shown that the stability margins towards the right-hand side of 
complex plane are larger than expected according to simulations, the cell 
parameter variations within certain limits will preserve the instability of the 
array. 
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1. Introduction 
 
Cellular Neural Networks (CNN) are homogeneous arrays of identical 

and identically coupled cells. An interesting behavior CNN’s can exhibit is that 
of pattern formation. One of the architectures able to produce patterns is based 
on second order two-port cells coupled by means of two resistive grids (Chua et 
al., 1988; Goraş et al., 1995). The specific feature of Turing patterns is that the 
isolated cells are stable while the dynamics of the array can exhibit unstable 
spatial modes. If the cells are piecewise linear, a powerful method of 
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investigation represents the decoupling technique basically consisting of a 
change of variable chosen according to the boundary conditions. A conjecture 
regarding the limits of the characteristic polynomials roots is made and verified 
through simulations. 

 
2. The Architecture of the Two-Grid Coupled CNN’s and the Decoupling 

Technique 
 

A possible realization of a piecewise linear cell and the architecture of 
the two-grid coupled CNN are represented in Fig.1. 

 

 
                      a                                                                    b 

Fig. 1 – a – Two-port cell; b – piecewise linear characteristic of the nonlinear resistor. 
 

The equations describing the CNN composed of M cells for the linear 
central part, i.e. for u-voltages of the cell in Fig. 1 b within the interval [E1, E2], 
are (Goraş, 1995) 
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where fu , fv , gu , gv  are the elements of the Jacobian matrix of f(u,v) and g(u,v), 
Du and Dv – the diffusion coefficients, γ is a scaling coefficient and  2

ix∇ stands 
for the 1-D Laplacean 2

1 1 2i i i ix x x x+ −∇ = + − . The relations between the above 
coefficients and the circuit elements of the CNN cell are 
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The analysis of the CNN dynamic behavior can be simplified in the 

linear part of the cells characteristics using the decoupling technique (Goraş et 
al., 1995; Goraş, 2002; Goraş et al., 1996, 1997). We transform the system of 
equations by means of the change of variable  
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where ΦM(i,m) are eigenfunctions (depending on the boundary conditions) of 
the 1-D Laplacean, i.e. 2 2( , ) ( , )M m Mi m k i m∇ Φ = − Φ and 2

mk – the eigenvalues, 
proportional to the square (or sum of squares) of sine functions.  

With the above change of variable, the set of 2M coupled differential 
equations in the u and v variables is transformed into M sets of decoupled pairs 
of second order linear differential equations in the new variables – the 
amplitudes of the spatial components of the voltages 
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For ring boundary conditions, the eigenvectors are ( , )M i mΦ =  

exp( j2 / )mi Mπ= and the eigenvalue is 2 24sinm
mk
mM

π
= . 

The natural frequencies, λm1 and λm2 , are the roots of the characteristic 
polynomials   
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The solutions of the 1-D CNN equations are thus 
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where the constants am , bm , cm , dm depend on the initial conditions.  

Considering the decoupling technique that has been presented above, 
the mechanism of the pattern formation, that is the existence of unstable spatial 
modes, can be explained by means of the existence of positive real values for 
the dispersion curve of the modes and also by means of the nonzero initial 
conditions of those modes,              
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In order to have an image concerning the manner in which each of the 

six parameters influences the dispersion curve (Goraş et al., 2007), several 
graph families have been presented in Fig. 2 a,…,2 f.  

 

  

  

  
 

Fig. 2 – Family of dispersion curves for variable: 
a – fu , b – fv , c – Du , d – Dv , e – gu , f – gv . 

 
The peak of the dispersion curve is located at the value (Goraş et al., 

1995) 



Bul. Inst. Polit. Iaşi, t. LVII (LVXI), f. 2, 2011                                        37                                         
 

( )2 .u v
p v u v u

v uu v

D D
k g f f g

D DD D
γ +

= − + − 
−  

                          (7) 

 
It has been shown that using a spectral decoupling technique, valid for 

the linear part of the transient, the final pattern can be predicted to a more or 
less extent. The pattern formation may be regarded as a result of the competition 
between modes, their strengths and values being equally important. 
 
 

3. Nonhomogeneous CNN’s and Gershgorin’s Circles 
 

The main idea of this research is to investigate the behavior in terms of 
robustness of a two-grid coupled CNN when the paramereters vary. We want to 
see if the cell parameter variations within certain limits will preserve the 
existence of a band of unstable modes and in this way the instabillity of the 
array.  For this purpose it will be used the Gershgorin circle theorem (Cvetkovic 
et al.,2004; Hote et al., 2006). 

Gershgorin theorem gives bounds for the region in the complex plane 
where the eigenvalues of a matrix lie.  

Given a square matrix of order n, A = (ai,j) ∈ C ,then all its eigenvalues 
lie in the union of n circles   
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= ≠

= ∑  (sum  of  off-diagonal elements in row i ); Γi(A) is the 

i-th Gershgorin circle and Γ(A) – the Gershgorin set for A.   

Noting that matrix A and its transpose AT  have the same eigenvalues, 
applying the above theorem for AT yields another set ˆ ( )AΓ . The eigenvalues of 
matrix A are lying in the complex plane within the intersection of the 
Gershgorin sets Γ(A) and ˆ ( )AΓ . 

To simplify the notations, in the following we consider as an example a 
5-cell CNN with ring boundary conditions which is described by the set of state 
equations of order 10 (each cell is of second order): 
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Using the above change of variable, the equations decouple and become 
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The difference between the two matrices that describe the dynamics of 
the array is that the latter implies the homogeneity of the whole array 
(Alecsandrescu et al., 2008). It can be thus used only for homogeneous 
variations of the parameters. For each matrix we will determine two Gershgorin 
sets and we will compare the results of the two approaches in what concerns the 
rightmost circle whose position is related to the existence of a band of unstable 
modes. 

Due to the symmetries of the array and thus of the equations, there are 
only two values for the Gershgorin circles for each CNN, only the radii being 
variable. 

The centers of the Gershgorin circles for the first matrix are  
1 2u uc f Dγ= − ; 2 2v vc g Dγ= −  and the radii 1 2 u ur D gγ= + ; 

2 2 v vr D fγ= +  (computed for columns) and 1 2 u vr D fγ= + ; 

2 2 v ur D gγ= +  (computed for rows).  For the matrix of the decoupled 

equations the centers of the Gershgorin circles are 2
1 u m uc f k Dγ= − ; 

2
2 v m vc g k Dγ= −  and the radii are 1 vr fγ= ; 2 ur gγ= , for both centers.  

 
 

4. Simulation Results 
 

The  following  results  have  been  obtained  for a 1-D array of length 
M = 10  with periodic (ring) boundary conditions and characterized by fu = 0.4, 
fv = –1, gu =1.5, gv = –2, Du = 2, Dv = 120 and γ = 10.  

Gershgorin circles centers are  1 2 0u uc f Dγ= − = ;  2 2v vc g Dγ= − =  
= –260 and the radii computed for columns and rows: 1 2 u ur D gγ= + = 19; 

2 2 v vr D fγ= + = 250 and 1 2 u vr D fγ= + = 14; 2 2 v ur D gγ= + = 255, 
respectively.  

For this example, the peak of the dispersion curve is 2 0.614pk =  

according to (7) and ( )2 1.19pe kλℜ = . 
From above values it can be observed that the rightmost abscissa for the 

eigenvalues is 19 and is larger than the greatest real part of the eigenvalues so 
that there is no reason to state that the array will be unstable. Using the matrix 
for decoupled equations the Gershgorin centers and radii for the adopted values 
of the parameters are given by the core matrix 
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where 2 [0, 4]mk ∈ . Thus, the abscissas of centers of the Gershgorin circles are  
24 mk−  and  220 120 mk− − , i.e. they have values between – 4 and 4 and between 

– 460 and   – 20. The radii are 15 and 10. The rightmost absissa of the circles is 
19 as in the previous case.   

In what follows we vary some of the CNN parameters, i.e. γ, Dv , fu , gv , 
gu; the associated Gershgorin circles have been represented in Figs. 3,…,7. 
From these figures it can be seen that many of the circles have no influence on 
the stability limits.  

 
 

 
Fig. 3 – Gershgorin circles for γ parameter variation. 

 
 

 
Fig. 4 – Gershgorin circles for Dv parameter variation. 
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Fig. 5 – Gershgorin circles for fu parameter variation. 

 
Fig. 6 – Gershgorin circles for gv parameter variation. 

 
Fig. 7 – Gershgorin circles for gu parameter variation. 
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5. Conclusions 
 

In this paper we have investigated how the parameters variations of a 
double grid second order cell CNN within certain limits can influence the 
robustness of the network.  It has been shown that the stability limits estimated 
using the theory of Gershgorin circles are larger than expected according to 
simulations.  These limits define the frontier of the domain for preserving the 
instability of the network. 
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ROBUSTEŢEA REŢELELOR NEURONALE CELULARE LA VARIAŢIA 

PARAMETRILOR 
 

(Rezumat) 
 

Se prezintă rezultatele investigării robusteţei Reţelelor Neuronale Celulare 
(RNC) pentru evoluţii în zona central liniară la variaţia parametrilor. Rezultatele 
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simulărilor confirmă faptul că variaţiile parametrilor celulei între anumite limite stabilite 
nu  modifică  caracterul instabil al reţelei. Instrumentul matematic folosit în acest scop îl 
constituie teorema cercurilor lui Gershgorin.  Acestea furnizează limitele pentru valorile 
proprii, cel mai din dreapta cerc având legătură cu existenţa benzii de moduri instabile. 
Se constată că aceste cercuri conduc la limite mai mari pentru valorile proprii asftel 
încât trebuie utilizate cu grijă. 



 




