EIGENVALUE DETERMINATION FOR A RECTANGULAR WAVEGUIDE WITH TWO DIELECTRICS IN TE MODE

BY

CAMELIA PETRESCU*

“Gheorghe Asachi” Technical University of Iași
Faculty of Electrical Engineering, Energetics and Applied Informatics

Received: September 23, 2011
Accepted for publication: October 14, 2011

Abstract. The solutions obtained for the electric and magnetic field components in a rectangular closed waveguide with metal walls and two longitudinally disposed dielectric layers are determined. The waveguide eigenvalues, complex propagation constant, critical frequency and wavelength are determined too and the practical mode of excitation is established for some numerically analysed cases.

Key words: closed waveguides; wave propagation; separation of variables method.

1. Introduction

High frequency electromagnetic energy, beginning with the microwave range, is transmitted with waveguides, because transmission lines, consisting of two conductor systems, become inefficient at this frequency range due to increased conductor and dielectric losses. Typical applications of waveguides are encountered in TV transmitters, radar installations and satellite communications.

Technical textbooks present comprehensive studies of both one conductor and two conductor rectangular and cylindrical waveguides, as well as

* e-mail: campet@ee.tuiasi.ro
dielectric or dielectric–conductor waveguides (Miner, 1996; Sadiku, 1995; Petrescu, 2010). The study is almost always limited to the case of uniform waveguides with homogeneous dielectric and simple geometry. Papers published in scientific journals study mostly the case of propagation in waveguides that present a discontinuity of the dielectric properties along the direction of propagation (Rodriguez et al., 2005; Chambers, 1953). In our previous studies closed waveguides, as well as open dielectric–conductor uniform waveguides, were investigated (Petrescu, 2005).

The present paper investigates a rectangular uniform waveguide with two layers of dielectric. The separation of variables method is used in order to solve the Helmholtz differential equation with partial derivatives satisfied by the field components in sinusoidal steady state. The non-linear algebraic equation satisfied by the separation constants is established and solved numerically for several frequencies in the microwave range. The electric and magnetic field components are determined and, based on the field patterns, the practical mode of exciting the rectangular waveguide for a particular frequency is established.

2. Physical Model of the Two Dielectric Waveguide

An one conductor rectangular waveguide with perfectly conducting walls and two layers of ideal dielectric inside is considered (Fig.1). The waveguide axis is oriented in direction \(O_z \)-axis. The two dielectric layers, separated by a plane surface parallel with the \(yOz \)-plane, have the material constants \(\varepsilon_1, \mu_1 \), and \(\varepsilon_2, \mu_2 \), respectively, and the thicknesses, \(d_1 \) and \(d_2 \). The waveguide is excited in the TE mode (\(H_z \neq 0, E_z = 0 \)), at an angular frequency \(\omega = 2\pi f \).

\[\frac{\partial^2 H_z}{\partial x^2} + \frac{\partial^2 H_z}{\partial y^2} + k_z^2 H_z = 0, \]

(1)

where

\[k_z^2 = \gamma^2 + \omega^2 \mu \varepsilon - j\omega \mu \sigma \]

(2)
and \(\gamma = \alpha + j \beta \) is the complex propagation constant in the waveguide. If the two dielectrics are perfect, then \(\gamma = j \beta \) and the conductivity is \(\sigma = 0 \), so that

\[
k_z^2 = \alpha^2 \mu \epsilon - \beta^2 .
\]

(3)

Using the separation of variables method, \(H_z = X(x)Y(y) \), and, substituting in (1), two ordinary differential equations are obtained namely

\[
\frac{X''}{X} = -k_x^2 ; \quad \frac{Y''}{Y} = -k_y^2 ,
\]

(4)

with \(k_x^2 + k_y^2 = k_e^2 \), \(k_x \) and \(k_y \) being separation constants to be further determined from the boundary and interface matching conditions.

The general expression for \(H(x,y,z) \), defined for the domains \(i = 1, x \in [d_2, a] \), and \(i = 2, x \in [0, d_2] \), is

\[
H_z(x,y,z) = \left(A \sin k_{x_1} x + B \cos k_{x_1} x \right) \left(C \sin k_{y_1} y + D \cos k_{y_1} y \right) e^{-\gamma z} .
\]

(5)

The constants \(k_{x_1}, k_{x_2}, k_{y_1}, k_{y_2}, \gamma_1, \gamma_2 \) have different expressions due to the different material properties.

The other components of the magnetic and electric field may be calculated using the relations (Miner, 1996)

\[
H_x = -\frac{\gamma}{k_e^2} \frac{\partial H_z}{\partial x} ; \quad H_y = -\frac{\gamma}{k_e^2} \frac{\partial H_z}{\partial y} ; \quad E_x = -\frac{j \omega \mu}{k_e^2} \frac{\partial H_z}{\partial y} ; \quad E_y = \frac{j \omega \mu}{k_e^2} \frac{\partial H_z}{\partial x} .
\]

(6)

In the assumption that the waveguide has perfectly conducting walls, the tangential component of the electric field must be zero near these boundaries.

The condition \(E_z \big|_{y=0} = 0 \) leads to \(C_1 = C_2 = 0 \) and the relation \(E_z \big|_{y=a} = 0 \) gives the expression for the separation constant \(k_{x_1} = k_{x_2} = k_y = n \pi / b , n \in \mathbb{N} \). Likewise, \(E_y \big|_{x=0} = 0 \) leads to \(A_2 = 0 \) and \(E_y \big|_{x=a} = 0 \) gives the relation

\[
A_1 \cos k_{x_1} a - B_1 \sin k_{x_1} a = 0,
\]

so that

\[
A_1 = A_2 D_2, \quad B_1 = B_2 D_1, \quad C_2 = B_2 D_2 .
\]

(7)
The continuity conditions on the surface $x = d_2$ give five more relations namely

a) $\varepsilon_1 E_{y1} \bigg|_{x=d_2} = \varepsilon_2 E_{y2} \bigg|_{x=d_2}$ leads to

$$\frac{\varepsilon_1 \mu k_y}{k_{e1}^2} (A_1 \sin k_x d_2 + B_1 \cos k_x d_2) \sin k_y y = \frac{\varepsilon_2 \mu k_y}{k_{e2}^2} C_2 \cos k_x d_2 \sin k_y y; \quad (8)$$

b) $E_{y1} \bigg|_{x=d_2} = E_{y2} \bigg|_{x=d_2}$ leads to

$$\frac{\mu k_x}{k_{e1}^2} (A_1 \cos k_x d_2 - B_1 \sin k_x d_2) \cos k_y y = -\frac{\mu k_x}{k_{e2}^2} C_2 \sin k_x d_2 \cos k_y y; \quad (9)$$

c) $H_{z1} \bigg|_{x=d_2} = H_{z1} \bigg|_{x=d_2}$ leads to

$$(A_1 \sin k_x d_2 + B_1 \cos k_x d_2) \cos k_y y = C_2 \cos k_x d_2 \cos k_y y; \quad (10)$$

d) $H_{y1} \bigg|_{x=d_2} = H_{y2} \bigg|_{x=d_2}$ leads to

$$\frac{\gamma_1}{k_{e1}^2} (A_1 \sin k_x d_2 + B_1 \cos k_x d_2) k_y \sin k_y y = \frac{\gamma_2}{k_{e2}^2} C_2 \cos k_x d_2 k_y \sin k_y y; \quad (11)$$

e) $\mu_1 H_{z1} \bigg|_{x=d_2} = \mu_2 H_{z2} \bigg|_{x=d_2}$ leads to

$$\frac{\mu_1 \gamma_1 k_x}{k_{e1}^2} (A_1 \cos k_x d_2 - B_1 \sin k_x d_2) \cos k_y y = -\frac{\mu_2 \gamma_2 k_x}{k_{e2}^2} C_2 \sin k_x d_2 \cos k_y y. \quad (12)$$

Performing the ratio of relations (9) and (12) one obtains

$$\gamma_1 = \gamma_2,$$ \hspace{1cm} (13)

meaning that the propagation constant, γ, is the same in both dielectrics, which was to be expected. Relation (13) may be rewritten, taking into account expression (2), resulting

$$k_{e1}^2 = k_{e2}^2 - \omega^2 (\mu_2 \varepsilon_2 - \mu_1 \varepsilon_1).$$ \hspace{1cm} (14)
The ratio of relations (8) and (11) leads to $\mu_1\varepsilon_1 = \mu_2\varepsilon_2$, a condition that can be attained only in particular cases. To overcome the previous restriction, the condition $n = 0$, ($k_y = 0$), may be imposed; in this case relations (8) and (11) are of the form $0 = 0$. This also means that $k_{x_1} = k_{x_1}$, $k_{x_2} = k_{x_2}$.

Thus the pure TE wave in the waveguide with two dielectric layers is characterized by

$$H_z(x, y, z) = \begin{cases} \left(A_1 \sin k_{x_1} x + B_1 \cos k_{x_1} x\right)e^{-\gamma z}, & x \in [d_2, a]; \\ C_2 \cos k_{x_2} x e^{-\gamma z}, & x \in [0, d_2]. \end{cases} \quad (15)$$

Using relations (6) the other components of the electric and magnetic field are $E_x = 0$, $H_y = 0$,

$$H_x(x, y, z) = \begin{cases} \frac{-\gamma}{k_{x_1}} \left(A_1 \cos k_{x_1} x - B_1 \sin k_{x_1} x\right)e^{-\gamma z}, & x \in [d_2, a]; \\ \frac{-\gamma}{k_{x_2}} C_2 \sin k_{x_2} x e^{-\gamma z}, & x \in [0, d_2]. \end{cases} \quad (16)$$

$$E_y(x, y, z) = \begin{cases} \frac{j \omega \mu_1}{k_{x_1}} \left(A_1 \cos k_{x_1} x - B_1 \sin k_{x_1} x\right)e^{-\gamma z}, & x \in [d_2, a]; \\ \frac{-j \omega \mu_2}{k_{x_2}} C_2 \sin k_{x_2} x e^{-\gamma z}, & x \in [0, d_2]. \end{cases} \quad (17)$$

Using relations (10) and (7) it results the constant

$$C_2 = \frac{\sin k_{x_1} d_2 + \cotan k_{x_1} a \cos k_{x_1} d_2}{\cos k_{x_1} d_2} A_1. \quad (18)$$

Substituting (7) and (18) in (12) the relation

$$\frac{\mu_1 k_{x_1}}{\mu_2 k_{x_2}} k_{x_2}^2 = \frac{(\sin k_{x_1} d_2 + \cotan k_{x_1} a \cos k_{x_1} d_2) \sin k_{x_1} d_2}{\cos k_{x_1} d_2 (\cos k_{x_1} d_2 - \cotan k_{x_1} a \sin k_{x_1} d_2)} \cdot (19)$$

Is obtained.

Taking into account that $k_{x_1} = k_{x_1}$, $k_{x_2} = k_{x_2}$, equation (14) gives the relationship between the separation constants k_{x_2} and k_{x_1},

$$k_{x_2} = k_{x_2} = \sqrt{k_{x_1}^2 + \omega^2 (\mu_2 \varepsilon_2 - \mu_1 \varepsilon_1)} = \sqrt{k_{x_1}^2 + \omega^2 (\mu_2 \varepsilon_2 - \mu_1 \varepsilon_1)}. \quad (20)$$
Finally, substituting (20) in (19) it results the relation

\[
\frac{\mu_1}{\mu_2} \frac{\sqrt{k_{x_1}^2 + \omega^2 (\mu_2 \varepsilon_2 - \mu_1 \varepsilon_1)}}{k_{x_1}} = -\frac{\tan \frac{\sqrt{k_{x_1}^2 + \omega^2 (\mu_2 \varepsilon_2 - \mu_1 \varepsilon_1)}}{d_2}}{\tan \frac{k_{x_1}}{d_1}}.
\] (21)

The previous relation represents a non-linear algebraic equation, the solution of which is the separation constant, \(k_{x_1} \). Using (2) the complex propagation constant the expression

\[
\gamma = \sqrt{k_{x_1}^2 - \omega^2 \mu_1 \varepsilon_1} = j \beta.
\] (22)

is obtained.

Propagation occurs if \(\omega > \omega_c \), where \(\omega_c = k_{x_1} / \sqrt{\mu_1 \varepsilon_1} = k_{x_1} / \sqrt{\mu_0 \varepsilon_1} \), this expression being similar to the one obtained in the case of a rectangular waveguide filled with a homogeneous dielectric with the material constants \(\varepsilon_1 \), \(\mu_1 \) (Petrescu, 2010).

The wavelength in the two dielectrics is

\[
\lambda_g = \frac{2\pi}{\beta} = \frac{2\pi}{\sqrt{\omega^2 \mu_1 \varepsilon_1 - k_{x_1}^2}}.
\] (23)

3. Results and Discussions

In order to study the frequency behaviour of the waveguide with two vertical dielectric layers, several simulations were made in two cases: \(d_2 = a/4 \) and \(d_2 = a/2 \). The numerical values used in the tests were \(a = 2 \) cm, \(b = 1 \) cm, \(\mu_1 = \mu_2 = \mu_0 \), \(\varepsilon_1 = 1 \), \(\varepsilon_2 = 2.1 \) (Teflon). The frequencies were considered in the range 10 GHz–50 GHz, correlated with the waveguide dimensions. In each case, for every frequency, the non-linear eq. (21) was solved numerically in MATLAB, in order to determine the value of the separation constant \(k_{x_1} \). Since multiple solutions are obtained in each case, the critical frequency, \(f_{cr} = \omega_c / 2\pi \), was computed for each value of \(k_{x_1} \) in order to determine if the wave with the considered frequency, \(f \), satisfies the condition \(f > f_{cr} \). The guide wavelength was calculated and the field components \(H_z \), \(H_x \), \(E_y \) were plotted in order to verify that the obtained solution satisfies the boundary and continuity conditions, and also to establish the practical means of excitation. Some of the obtained numerical results are presented in Table 1. The numerical values for \(k_{x_1} \) are given in ascending order until the first solution that renders \(f < f_{cr} \) is met.
Table 1

<table>
<thead>
<tr>
<th>f GHz</th>
<th>k_{x_1}</th>
<th>f_c GHz</th>
<th>Propagation</th>
<th>Electric or magnetic dipole antenna position, [cm]</th>
<th>λ_g cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>163.82</td>
<td>7.8</td>
<td>Yes</td>
<td>$x_0=1.04$</td>
<td>1.63</td>
</tr>
<tr>
<td></td>
<td>356.75</td>
<td>17.03</td>
<td>Yes</td>
<td>$x_0=1.56$</td>
<td>2.86</td>
</tr>
<tr>
<td></td>
<td>558.25</td>
<td>>20</td>
<td>No</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>20</td>
<td>273.06</td>
<td>13.03</td>
<td>Yes</td>
<td>$x_0=1.42$</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td>449.57</td>
<td>21.46</td>
<td>Yes</td>
<td>$x_0=1.65$</td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td>643.43</td>
<td>>30</td>
<td>No</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>30</td>
<td>317.01</td>
<td>15.13</td>
<td>Yes</td>
<td>$x_0=1.5$</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>559.52</td>
<td>26.71</td>
<td>Yes</td>
<td>$x_0^{(1)}=1.16$; $x_0^{(2)}=1.72$</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>726.28</td>
<td>34.67</td>
<td>Yes</td>
<td>$x_0^{(1)}=1.35$; $x_0^{(2)}=1.78$</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>927.27</td>
<td>>40</td>
<td>No</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>40</td>
<td>114.47</td>
<td>5.46</td>
<td>Yes</td>
<td>$x_0=1$</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>360.04</td>
<td>17.19</td>
<td>Yes</td>
<td>$x_0=1.56$</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>836.78</td>
<td>39.95</td>
<td>Yes</td>
<td>$x_0^{(1)}=1.06$; $x_0^{(2)}=1.44$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1,005.1</td>
<td>47.99</td>
<td>Yes</td>
<td>$x_0^{(1)}=1.22$; $x_0^{(2)}=1.53$; $x_0^{(3)}=1.84$</td>
<td>2.14</td>
</tr>
<tr>
<td></td>
<td>1,208.1</td>
<td>>50</td>
<td>No</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

For comparison the same rectangular waveguide filled with air (homogeneous dielectric) and excited in the TE$_{10}$ mode ($k_y = 0, k_z = k_x = \pi/a = 157.07$) has a critical frequency of $f_c^{(1)} = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \cdot \frac{1}{2a} = 7.5$ GHz (Petrescu, 2010), while if it is filled with Teflon ($\varepsilon_r = 2.1$), the critical frequency is $f_c^{(2)} = 5.17$ GHz. The guide wavelength, λ_g, for the case of the air filled waveguide, having the expression (Petrescu, 2010)

$$\lambda_g = \frac{2\pi}{B} = \frac{2\pi}{\sqrt{\omega^2 \mu \varepsilon - k_x^2}},$$

varies between 4.54 cm and 0.61 cm, in the frequency range 10 GHz...50 GHz.

The analysis of the numerical data shows that the pure TE mode can propagate in the waveguide presented in Fig.1 only for the frequencies above 10 GHz. For each frequency in the test range there are up to four TE modes (at most four acceptable solutions for k_{x_1}), but most frequently there are one or two modes. For a given frequency, the wavelength of the TE wave increases for increasing values of k_{x_1}. The critical frequency also increases for increasing values of k_{x_1}, so that, although eq. (21) has an infinite, but numberable number
of solutions, only one, two, three, or at most four solutions satisfy the condition $f > f_c$. As the frequency increases, the number of achievable pure TE modes for a given value of f, also increases, but is limited in both analysed cases, $d_2=\frac{a}{4}$ and $d_2=\frac{a}{2}$.

The practical way to excite the TE mode in the waveguide with two vertical dielectric layers (Fig. 1) may be established by inspecting the plots of the field components $H_z(x)$, $H_x(x)$, $E_y(x)$. The fundamental (or dominant) TE mode can be excited by placing an electric dipole antenna oriented in the Oy-axis direction in the position x_0, in the air region, where $E_y(x)$ has a maximum or minimum value, or by placing in the same position a magnetic dipole antenna with its axis parallel to Ox-axis.

![Graphs](image1.png)

Fig. 2 – Field components corresponding to the case presented in Table 1, line 8.

The plots obtained in the case $d_2 = \frac{a}{2}$, $f = 40$ GHz, $k_x = 317.01$ are presented in Fig. 2. The extreme value corresponding to the air region, x_0, which appears in the plots of $E_y(x)$ and $H_z(x)$, represents the position where the electric or magnetic dipole antenna, having the orientation presented above, may be placed.
4. Conclusions

Rectangular waveguides filled longitudinally with two dielectrics may be completely analysed using the separation of variables method and imposing the boundary and interface conditions. The device acts as a high-pass filter allowing the propagation of waves with frequencies higher than a critical frequency. A limited number of pure TE modes (sometimes only one) can be obtained for each frequency \(f > f_{cr} \). The number of TE modes is given by the number of solutions of the non-linear algebraic equation satisfied by the separation constant \(k_{x} \). The waveguide can be excited in the desired TE mode (for a given frequency \(f \) and a corresponding guide wavelength) using small electric or magnetic dipolar antennas placed in the positions where the field components \(E_{y} \) or \(H_{x} \) exhibit extreme values.

REFERENCES

DETERMINAREA VALORILOR PROPRII PENTRU UN GHID DE UNDĂ RECTANGULAR CU DOUĂ STRATURI DIELECTRICE Funcționând în Modul TE

(Rezumat)

Se stabilesc soluțiile analitice, obținute cu ajutorul metodei separării variabilelor, pentru componentele câmpului electromagnetic în interiorul unui ghid de undă metallic rectangular, cu două straturi dielectrice, excitat în modul TE. Se stabilește și se rezolvă numeric ecuația algebrică nelineară satisfăcătoare de valorile proprii, determinându-se frecvența critică, constantă complexă de propagare și modul practic de excitare al ghidului pentru câteva cazuri numerice analizate.