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Abstract. The nonlinear differential equation of first order satisfied by the 
function X3(R3) is established, where Z3(Im) = R3(Im) + jX3(Im) represents the 
equivalent complex impedance of the nonlinear inertial connection branch 
between the gates (1), (1′) and (2), (2′) of a general, linear, non-autonomous two-
port, in harmonic steady-state, so that the maximum active power transferred 
through the two-port have an extreme value, Im representing the amplitude of an 
arbitrary harmonic current. 
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1. Introduction 

 

In the first part of this work (Rosman, 2007), the transfer of maximum 
active power, in harmonic steady-state, through a general linear, non-
autonomous and passive two-port was studied when the coupling branch 
between the gates (1), (1′) and (2), (2′) of the two-port is constituted by the 
serial connexion of a resistor, a coil and a condenser, all three nonlinear inertial. 

In what follows the same problem is studied considering the more 
generally case when the coupling branch between the gates (1), (1′) and (2), (2′) 
is constituted by some connexion of nonlinear inertial resistors, coils and 
condensers, supposing that the equivalent resistance and reactance of this 
coupling branch are functions of a same value of the amplitude of a harmonic 
certain current. 

Beforehand it is necessary to specify that the eqs, of a general linear, 
non-autonomous and passive two-port (GLNPT – Fig. 1) are, in harmonic 
steady-state (Sigorsky, 1955), 
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represents the two-port’s fundamental parameters matrix and  
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is the complex impedance of the coupling branch between the gates (1), (1′) and 
(2), (2′). 

In a previous paper (Rosman, 2003) the problem concerning the transfer 
of active power through a GLNPT having a linear coupling branch between the 
gates (1), (1′) and (2), (2′), in harmonic steady-state, was studied. It was 
established that this power can reach a maximum value having the expression 
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where: U1 is the RMS value of the applied voltage at the input gate (1), (1′) and 
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a, b,…, g – coefficients which depend only on the two-port’s fundamental 
parameters, Aij , (i, j = 1, 2, 3); theirs expressions are given in Appendix 1. 
 

2. Case of General, Linear, Non-Autonomous and Passive Two-Ports, in 
Harmonic Steady-State, Having the Coupling Branch between (1), (1′) and 

(2), (2′) Gates Nonlinear Inertial 
 

Having in view the nonlinear inertial elements property concerning the 
response vs. excitation characteristic, which is linear in instantaneous values and 
nonlinear in RMS values (Philippow, 1963) it results that if at the input gate of a 
linear (on nonlinear inertial) two-port, having the coupling branch between the 
(1), (1′) and (2), (2′) gates nonlinear inertial, is applied a harmonic voltage, the 
steady-state which is established is a harmonic one. Consequently the stady of 
two-ports in such regimes may be performed using the complex symbolic 
method. In these conditions it is obvious that relation (4) must be reconsidered 
becoming 
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because 
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Consequently, in the studied case in this section the maximum active power 
may be considered as a function of a single independent variable, P2 max(Im). 
Here Im represents the amplitude of a harmonic arbitrary current. 
 

2.1. Differential Equation Satisfied by the Function X3(R3) in the Studied Case 
 

In view to determine the extreme value of function P2max(Im), when 
these ones exist, the derivative 
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is performed with 
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The expressions of coefficients A, B,…, F, which depend only on fundamental 
parameters, Aij , (i, j = 1, 2, 3), of the GLNPT, are given in Appendix 2. 

If the derivative (7) is annulled it results the eq. 
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Introducing the notations 
 

3 3( ) ,   ( )m mR I x X I y= =                                      (10) 
 
eq. (9) becomes 
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It is easy to recognize that differential eq. (11) is a nonlinear one, of first order, 
belonging to the type                                    
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2.2. Solution of Differential Equation (11) 
 

Performing the derivatives 
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it results that 

;
M N

y x

∂ ∂
≠

∂ ∂
                                                (15) 

 

consequently is obviously that expression M(x,y)dx + N(x,y)dy isn’t an exact 
total differential. In this case the differential eq. (11) may be integrated only 
using numerical proceedings. 

In the particular case when the GLNPT’s fundamental parameter satisfy 
either the relation 

 

13 0A =                                                 (16) 
 
or the relation 
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the differential eq. (11) admits, eventually, an analytical solution. As a matter of 
fact in the first case (s. rel. (16)) 
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eq. (12) becomes 
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which is inacceptable from a physical point of view. In the second case (s. rel. 
(17)) 
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and consequently eq. (12) becomes 
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d
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which is a nonlinear differential eq. with separate variables. The solution of this 
eq. leads to the expression 
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where K is an integration constant. Having in view relations (18) and notations 
(10) expression (22) becomes finally 
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which represents the eq. of a circle having the center in ( )33 33( ), ( )e A m Aℜ ℑ  and 

the radius *2 2
31 3333 13 ( )A K A e A A− ℜ . Since the circle’s radius must be a positive 

quantity it results that the integration constant must satisfy the inequality 
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It is possible to consider that the circle’s (23) arc situated in the half-

plane R3 ≥ 0 represents the geometric-locus diagram of the complex impedance 

3( )mZ I  in the harmonic steady-state working regimes when the maximum 
active  power  (5),  considered  as  a  function  of  one  independent  variable,  
P2 max(Im), has an extreme value. 

The solution with respect to X3(Im) of eq. (23) is 
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Having in view that X3(Im) must be a real (positive or negative) quantity, this 
condition is fulfilled only if 
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The inferior limit of these double inequality is a positive one only if  
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which is in agreement with (24). 
 

3. Maximum Active Power’s Transfer Efficiency to a Linear and Passive 
Receiver 

 
If the same proceeding as in § 2 is utilized it is possible to study, in what 

follows, the expression (Rosman, 2003) 
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of the maximum active power’s transfer efficiency through a GLNPT (Fig. 1) in 
harmonic steady-state, to a linear and passive receiver. The expressions of 
coefficients m, n, o, p, which depend only on the GLNPT’s fundamental 
parameters, are given in Appendix 1. 

Having in view relations (6), expression (28) becomes  
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3.1. Differential Equation Satisfied by the Function X3(R3) in the Studied Case 

 
Proceeding in an analogous manner as in § 2 it results that the derivative 
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is satisfied, where 
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The expressions of coefficients A′, B′,…, F′ are given in Appendix 2, depending 
only on GLNPT’s fundamental parameters, Aij , (i, j = 1, 2, 3). 

Differential eq. (30) is a nonlinear one, of first order, belonging to the 
type 
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3.2. Solution of Differential Equation (32) 

 
Taking into account relations (33) theirs derivatives are 
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and consequently 
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It results that the expression M′(x,y)dx + N′(x,y) isn’t an exact total differential; 
in this case the integration of differential eq. (32) must be performed utilizing 
only numerical methods. It is possible that in certain particular cases, like in § 2, 
differential eq. (32) admit an analytical solution. 

The curve’s X3(R3) are (as solution of differential eq. (32)), situated in 
the half-plane R3 ≥ 0 represents, in this case, the geometric-locus diagram of 
complex impedance Z3(Im) in the harmonic steady-state working regimes when 
the transferred maximum active power’s efficiency, through an GLNPT to a 
passive nonlinear inertial receiver considered as a function of one independent 
variable 

2 max
( )P mIη , has an extreme value. 

 
4. Conclusions 

 
1. The differential equation satisfied by the function X3(R3) when the 

maximum active power transferred through a general, linear, non-autonomous 
and passive two-port to a nonlinear inertial and passive receiver, in harmonic 
steady-state, has an extreme value, is determined. 

2. The analytical solution of this differential equations in a particular 
case, is obtained. 

3. The differential equation satisfied by the same function, X3(R3), when 
the efficiency of transferred maximum active power through the above 
considered two-port to a nonlinear and passive receiver, in harmonic steady-
state, has an extreme value, is determined too. 

 
Appendix 1 

 

The coefficients a, b,…, g and m, n, o, p, established in a previous paper 
(Rosman, 2003), are the following 
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Appendix 2 

 
Taking into account relations (8) and (A.1) one obtains 
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Similarly, having in view relations (31) and (A.1) it results 
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TRANSFERUL PUTERII ACTIVE MAXIME, ÎN REGIM PERMANENT 
ARMONIC, PRINTR-UN CUADRIPOL GENERAL LINIAR, 

NEAUTONOM ŞI PASIV, AVÂND LATURA DE CUPLAJ DINTRE 
PORłILE (1), (1′) ŞI (2), (2′) NELINIARĂ, INERłIALĂ ŞI PASIVĂ (II) 

 
(Rezumat) 

 

În cazul unui cuadripol general liniar, neautonom, având latura de cuplaj dintre 
porŃile (1), (1′) şi (2), (2′), de asemenea liniară, funcŃionând în regim permanent 
armonic, puterea activă maximă transferată unui receptor liniar este o funcŃie de două 
variabile independente, R3 şi X3 , reprezentând parametrii independenŃi ai laturii de 
cuplaj dintre porŃile (1), (1′) şi (2), (2′) ale cuadripolului. Dacă latura de cuplaj este 
neliniară, inerŃială, aceşti parametri pot fi consideraŃi ca depinzând de amplitudinea, Im , 
a unui curent arbitrar cu variaŃia armonică în timp, încât puterea activă maximă 
transferată receptorului devine o funcŃie de o singură variabilă independentă, Im. În acest 
caz se stabilesc ecuaŃiile diferenŃiale (neliniare şi de primul ordin) satisfăcută de funcŃia 
X3(R3) astfel încât: a) valoarea maximă a puterii active transferate receptorului să aibă 
valori extreme; b) randamentul cu care este transferată puterea activă maximă să aibă 
valori extreme. În general soluŃiile acestor ecuaŃii diferenŃiale pot fi obŃinute numai prin 
metode numerice. SoluŃia analitică a primei ecuaŃii a fost obŃinută într-un caz particuler. 


