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Abstract. Three oligopoly game models and new equilibrium concepts are
considered in order to investigate spectrum access scenarios in cognitive radio
environments: Nash, Pareto, and the joint Nash-Pareto, Pareto-Nash equilibria.
The experimental observations may be especially relevant for designing new
rules of behavior for emerging radio environments.
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1. Introduction

New spectrum bands are being released around the world: 2.6 GHz in
Europe, the 800 MHz digital dividend, 700 MHz and AWS – 1,700/2,100 MHz
in the U.S., etc. Existing spectrum bands are being deregulated to allow
coexistence of 2G, 3G, and 4G technologies. Technology neutral spectrum, in
the context of infrastructure sharing by operators (to lower costs, improve
capital efficiency), becomes more and more prevalent.

Current spectrum regimes are based on a highly prescriptive approach,
centralized control and decisions. The administrative approach makes it easier
for the regulators to ensure avoidance of excessive interference, to tailor
appropriate license conditions based on guard bands and maximum power
transmission levels (Doyle, 2009). But traditional spectrum planning was
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proved to be a slow process that cannot keep up with new innovations and
technologies. Studies have shown up to 90% of the radio spectrum remains idle
in any one geographical location. Also, the existing digital TV whitespaces can
provide significantly higher data rates compared to the 2.4 GHz ISM band.

The problem of harmonized spectrum access in dynamic radio
environments is addressed. Implementation of dynamic spectrum access tends
to be synonyms with Cognitive Radio (Doyle, 2009). This assumption, together
with reformulated game theoretical models, build up our approach.

Cognitive radios (CRs) are seen as the solution to the current low usage
of the radio spectrum (Corderio et al., 2006; Niyato & Hossain, 2007; Doyle,
2009). CRs have the potential to utilize the large amount of unused spectrum in
an intelligent way while not interfering with other incumbent devices in
frequency bands already licensed for specific uses (Corderio et al., 2006). A
cognitive radio has to manage a dynamic interaction profile. Such an interactive
decision process may be analysed using Game Theory models and  techniques.

Game Theory has been widely used as an analysis tool in economic
systems and has recently emerged as an effective framework for the analysis
and design of wireless networks. Radio resource allocation and dynamic
spectrum access may be described as strategic interactions between cognitive
radios (Neel et al., 2004; MacKenzie & Wicker, 2001;Huang & Krishnamurthy,
2009; Maskery et al., 2007) – each player payoff depends on the actions of all
players. We consider three well known oligopoly game models: Cournot,
Stackelberg, and Bertrand. Several equilibrium concepts are studied as game
solutions: Nash, Pareto, and the joint Nash-Pareto, Pareto-Nash equilibria. The
aim is to investigate the relevance of these equilibrium concepts for spectrum
access and resource allocation. The observations may be especially relevant for
designing new rules of behavior for dynamic radio environments.

The paper is structured as follows: Section 2 outlines the role of
cognitive radios in efficient spectrum usage. Section 3 provides some basic
insights to standard and joint game-equilibria. The game theoretical models
modes for spectrum whitespace access are described in Section 4. Section 5
presents and discusses the numerical results obtained from simulations. The
conclusions are presented in Section 6.

2. Cognitive Radios – a Solution for Low Usage of Radio Spectrum

WRAN IEEE 802.22 is the first wireless standard based on cognitive
radios. The 802.22 groundbreaking wireless air interface is defined for use by
license-exempt devices in the spectrum that is currently allocated to the
Television service. In this range there is much unused or underused frequency
spectrum. Since the new air interface is required to reuse the fallow TV
spectrum without causing any harmful interference to incumbents (i.e., the TV
receivers), cognitive radio techniques are of primary importance in
establishing/supporting adaptive strategies that facilitate coexistence. Such
adaptive strategies regard dynamic spectrum access and radio environment
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characterization (Niyato & Hossian, 2007).
CRs are seen as the solution to the current low usage of the radio

spectrum (Cordeiro et al., 2006; Niyato & Hossian, 2007; Doyle, 2009). CRs
have the potential to utilize the large amount of unused spectrum in an
intelligent way while not interfering with other incumbent devices in frequency
bands already licensed for specific uses (Niyato & Hossian, 2007). Mechanisms
based on frequency hopping have been widely used to enable wireless networks
to use resources from the unlicensed spectrum without frequency planning
(Cordeiro et al., 2006).

WRAN IEEE 802.22 is the first wireless standard based on CRs. The
802.22 groundbreaking wireless air interface is defined for use by license-
exempt devices in the spectrum that is currently allocated to the Television
service. In this range there is much unused or underused frequency spectrum.

A cognitive radio has to manage a dynamic interaction profile. In the
radio environment this is reflected in the interference profile that may be
prompted to change whenever another radio changes its profile. Such an
interactive decision process can be analysed using Game Theory models and
techniques (MacKenzie & Wicker, 2001; Huang & Krishnamurthy, 2009).

We may assume that the CRs know the form of the other CRs utility
functions if all the interacting radios have the same objective (e.g., maximizing
SINR) or if the radios can poll the other radios in the environment. However,
due to the variability of channel conditions it is unlikely that a CR will know the
precise values of other radios’ utility functions. Even without any ability to infer
other players’ utility functions, the equilibrium concept has a significant
implication for cognitive radio interactions modeled  as a repeated game (Neel
et al., 2004).

A CR is defined as a radio that can sense its environment and then
modify its behavior, based on a set of rules (policy), and without operator
intervention (Mitola, 2000). We chose to model the interactions between CRs as
interactions between players on an oligopoly market, which in this case is the
frequency spectrum. For a more realistic formulation of the game, a modified
rationality paradigm is considered. Within this paradigm radios may have
several approaches and biases towards different equilibrium concepts
(Dumitrescu et al., 2009). We investigate the Pareto equilibrium and a new
equilibrium concept – the joint Nash-Pareto equilibrium.

3. Game Equilibria. Generative Relations and Detection

A game may be defined as a system G = ((N, Si , ui), (i = 1,…,n)), where
(i) N represents the set of n players, N = {1,…,n};
(ii) for each player i  N, Si represents the set of actions Si = {si1 , si2 ,…,

sim}; S = S1 S2 … SN is the set of all possible game situations;
(iii) for each player i  N, ui : S  R represents the payoff function.
A strategy profile (strategy or action vector) is a vector s = (s1,…,sn),
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where si  Si is a strategy (or action) of player i. By (si , *
is ) we denote the

strategy profile obtained from s* by replacing the strategy of player I with si , i.e.
(si , *

is ) = ( *
1s , *

2s ,…, *
1is  , si , *

1is  ,…, *
1s ).

Game Theory provides a number of tools for analysing games. The
most frequently used steady-state concept is the Nash Equilibrium (NE), which
has been extensively studied (Neel et al., 2004; Dumitrescu et al., 2009;
Osborne, 2004). Informally, a strategy profile is an NE if no player can improve
her payoff by unilateral deviation.

Considering two strategy profiles, x and y, from S, the strategy profile,
x, is said to Pareto dominate the strategy profile, y (and we write x < Py) if the
payoff of each player using strategy, x, is greater or equal to the payoff
associated to strategy, y, and at least one payoff is strictly greater. The set of all
non-dominated strategies (Pareto frontier) represents the set of Pareto equilibria
of the game (Osborne, 2004).

In an n-player game consider that each player, i, acts based on a
certain type of rationality, ri , (i = 1,…, n). We may consider a two-player game
where r1 = Nash and r2 = Pareto. The first player is biased towards the Nash
equilibrium and the other one is Pareto-biased. Thus, a new type of equilibrium,
called the joint Nash-Pareto equilibrium, may be considered (Dumitrescu et al.,
2009). The considered generalization involves heterogeneous players that are
biased towards different equilibrium types or may act based on different types
of rationality (Dumitrescu et al., 2009).

Let us consider an n player game where each player may be either Nash
or Pareto-biased. We denote by IN the set of Nash biased players (N-players)
and by IP the set of Pareto biased players (P-players). Therefore we have

  
  
1,..., : Nash ,

1,..., : Pareto .

N i

P j

I i n r

I j n r

  

  

An operator for measuring the relative efficiency of profile strategies
has been introduced (Osborne, 2004)

,: NSSE 
defined as

 
 

( , ) card : ( , ) ( ),

         card : ( ) ( ), .
N i i i i i i

P j j

E y x i I u x y u y x y

j I u y u x x y
    

   

E(x, y) measures the relative efficiency of the strategy profile, x, with
respect to the strategy profile, y. The relative efficiency enables us to define a
generative relation for the joint Nash-Pareto (NP) equilibrium.
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Consider a relation < NP defined as y < NP x if and only if

).,(),( yxExyE 

The relation < NP is considered as the generative relation of the joint Nash
Pareto equilibrium.

An evolutionary technique for equilibria detection, based on appropriate
generative relations (Cremene et al., 2010) that allow the comparison of
strategies, is considered. Multi-objective Optimization Algorithms (Deb et al.,
2000) are efficient tools for evolving strategies based on a non-domination
relation. Numerical experiments aim the detection of pure equilibria or a
combination of equilibria in parallel with cognitive radios interaction. An
adaptation of the popular NSGA2 (Deb et al., 2000) has been considered.

4. Oligopoly Game Modeling of Cognitive Radio Environments

In order to assess dynamic spectrum access scenarios of cognitive
radios, three oligopoly game models are considered: Cournot, Stackelberg, and
Bertrand. The commodity of this oligopoly market is the frequency spectrum.
These models are computationally simple and therefore suitable for
implementation in resource-limited software-defined radio transceivers. To
illustrate the oligopoly environment models we consider a scene with two radios
(duopoly) so that the radios’ strategies and their equilibria can be represented
two-dimensionally. However, the same approach can be applied to the case of
more than two radios.

4.1.   Cournot Game Modeling of a Cognitive Radio Access Scenario

We consider a cognitive radio access scenario that can be modeled as a
simple reformulation of the Cournot oligopoly game. Suppose there are n
cognitive radios attempting to access the radio environment. Each radio, i, is
free to decide the number   ,0ic of simultaneous frequency hopping
channels the radio implements. How many simultaneous channels should each
radio implement in order to maximize its operation efficiency?

Based on the above scenario, a Cournot game can be formulated as
follows. The players are the cognitive radios attempting to access a certain
frequency band. The strategy of each player, i, is the number, ci, of
simultaneous implemented (active) channels. A strategy profile is a vector

),...,( 1 nccc  . The payoff of each player is the difference between a function
of goodput and power consumption (cost of implementing ci simultaneous
channels).

Let us denote by P(c) the fraction of symbols that are not interfered
with. The goodput for radio i is P(c)ci . Radio i cost for supporting ci
simultaneous channels is Ci(ci) .
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The payoff of player (radio) i is thus

)()()( iiii cCccPcu  .

In general, P decreases with the total number of implemented channels and Ci
increases with ci (more bandwidth implies more processing resources and more
power consumption). If these effects are approximated as linear functions, the
payoff function can be rewritten as

ii

n

k
ki KcccWcu 






  
1

)( ,

where: W is the total bandwidth available (set of available channels), K – the
cost of implementing a channel.

The Nash equilibrium is considered as the solution of the game

* ,  .1i
W Kc iN


  


.

4.2. Stackelberg Modelling of a Cognitive Radio Access Scenario

The traditional spectrum access approach ensures co-existence of
multiple systems by splitting the available spectrum into frequency bands and
allocating them to licensed (primary) users. The dynamic spectrum access in
cognitive environments improves the spectrum utilization by detecting
unoccupied spectrum holes or whitespaces and assigning them to unlicensed
(secondary) users. This situation, where we have incumbent monopoly and new
entrants, may well be modeled using a Stackelberg game model.

The players are the CRs – licensed and unlicensed (primary and
secondary) users. The strategy of player i is given by the number, ci , of
simultaneous implemented channels. The payoff of each player is the difference
between the goodput and the power consumption (cost of implementing ci
simultaneous channels).

Using the same notations as for Cournot modelling, the payoff function
of player i can be defined as

),()(),( 2121 iidii cCccPcccu    for i = 1, 2.

considering c2 = b2(c1) as the output of the secondary user for primary user’s
output c1 (Maskery et al., 2007). We consider a constant unit cost and a linear
inverse demand function, Pd(c), with the same definition as for the Cournot
model.
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The outcome of the equilibrium (Maskery et al., 2007) is that radio 1
activates *

1 ( ) / 2c W K   simultaneous channels and radio 2 activates *
2c 

*
2 1( ) ( ) / 4b c W K    simultaneous channels.

4.3. Bertrand Spectrum Access Modelling

In the Bertrand competition, producers compete by varying the product
price and thus adjusting the demand. A constant unit cost and linear demand
function are assumed.

The Bertrand competition for spectrum access may be reformulated as
follows: we consider n cognitive radios competing for access to ci channels, in a
given whitespace, W. The objective of each radio is to activate a subset of
channels in order to satisfy its current demand level (e.g. target throughput).
The strategy of each player, i, is a target number, pi(c), of non-interfered
symbols. Each player payoff is the difference between a function of goodput
and the cost of accessing, ci , simultaneous channels. Using the same notations
as for Cournot and Stackleberg models, the payoff function of radio i can be
written

1 2( , ) ( )( ), ( )( ) / 2, 0,  .i i i i j i i i j i ju p p p K W p p p p K W p p p p p         

5. Numerical Experiments

The results represent a sub-set of more extensive simulations. For
equilibria detection the evolutionary technique utilized by Dumitrescu et al.
(2009) is considered. A population of 100 strategies is evolved using a rank
based fitness assignment technique. In all experiments the process converges in
less than 20 generations. Our tests show that the evolutionary method for
equilibrium detection is scalable with respect to the number of available
channels (Cremene et al., 2010).

The simulation parameters for all the three models – Cournot,
Stackelberg, and Bertrand – are W = 10 (available channels) and K = 1 (cost of
accessing one channel).

5.1. Cournot Modelling – Numerical Experiments

Model evaluation results are presented for the Cournot competition with
two radios trying to access the same whitespace at the same time. The payoff
equilibria are captured in Fig. 1 (Nash, Pareto, Nash-Pareto, and Pareto-Nash).
The four types of equilibria are obtained in separate runs.

The NE corresponds to the scenario where each of the two CRs
activates 7 channels (from 24 available). The Pareto equilibrium describes a
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situation where the spectrum resource is completely used by one or both radios
in different portions. The number of active channels lies in the range [0, 10.5]
for each CR.

Fig. 1 – Cournot modelling – two radios (W = 24, K = 3); payoffs of the
evolutionary detected equilibria: Nash (49, 49), Pareto, NP and PN.

Although each CR tries to maximize its utility, none of them can access
more than half of the available channels. Moreover, the sum of active channels
is less than that for the NE. In other words, for NE the number of accessed
channels is maximum, and the available spectrum is efficiently used.

In some cases, the Nash-Pareto strategy enables the CR to access more
channels than for the NE strategy. In the performed experiments – (W = 24, K =
= 3), (W = 10, K = 1), and (W = 100, K = 1) – the PN equilibrium is symmetric
to the NP equilibrium with respect to the first bisecting line. It is interesting to
notice that none of the NP strategies actually reach NE.

The payoffs of P-players (payers from the Pareto front) are stuated in
the range [0, 110] and their sum is always larger than the NE payoff (49, 49).
For each strategy of the Nash-Pareto equilibrium the Pareto-player has a higher
payoff. The Nash-player’s payoff is smaller in a Nash-Pareto situation than in a
case where all the players play Nash (are Nash-biased). Even if the NP
strategies allow the CRs to access more channels, the payoffs are smaller than
for the Pareto strategies. This is due to interference increasing with the number
of accessed channels.

5.2. Stackelberg Modelling – Numerical Experiments

The payoffs of the evolutionary detected equilibria - Nash, Pareto, NP,
and PN – are captured in Fig. 2. Any strategy from the Pareto front is also a
Nash-Pareto strategy. If the primary user plays Nash then the secondary user
may maximize its payoff by choosing any strategy. If the secondary user plays
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Nash then the maximum payoff of the primary user is NE (55.12, 27.81)
(Fig. 2).

The secondary user by access less channels than in the Cournot case
(c2 = 10.5 which is less than three channels, NE = (3,3)), its maximum payoff
remains unaffected, 20 (Fig. 4). Instead, the primary user’s maximum payoff is
half (10) even if it accesses more channels (c1 = 4.5). For the Stackelberg
formulation of the game, the NE payoff of the secondary user (Fig. 4) is less
then in the Cournot case (5 instead of 9). For the primary user the NE payoff is
slightly increased (10.13 instead of 9).

Fig. 2 – Stackelberg modelling – two radios (W = 24, K = 3); payoffs of the
evolutionary detected equilibria: Nash (55.12, 27.81), Pareto,

NP = Nash and PN = Pareto.

This situation is relevant for interference control in dynamic spectrum
access scenarios between incumbents and new entrants. The analysis shows that
payoffs are maximized for all users if the incumbents are Nash oriented and the
new entrants are Pareto driven.

5.3. Bertrand Modelling – Numerical Experiments

We think the Bertrand oligopoly is suitable for modelling crowded
spectrum access scenarios and the reformulation is as follows. The Bertrand
strategy is the price. The equivalent of the price P(c) in this game reformulation
is the target number of non-interfered symbols of each radio. The lower this
target is the higher the chances are for the radio to access one or several
channels. On the other hand, as the number P(c) of non-interfered symbols per
channel decreases, the need for channels (the demand) increases. Thus, a radio
willing to maximize its goodput will attempt to occupy as many low-rate
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channels as possible. Figs. 3 and  4 qualitatively illustrate the winning situations
for two radios trying to access a limited bandwidth, W. The NE in this case,

Fig. 3 – Bertrand modelling – two radios (W = 24, K = 3);
evolutionary detected equilibria: Nash (3, 3), Pareto.

Fig. 4 – Bertrand modelling – two radios (W = 24, K = 3); payoffs of the
evolutionary detected equilibria: Nash (0, 0), Pareto, NP, and PN.

means zero payoff for each radio while the Pareto strategy ensures the
maximum possible payoff for one radio at a time. This indicates that, for a high
interference scene, some sort of scheduling or sequential access scheme is
required.
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6. Conclusions and Future Work

Three oligopoly game models are considered in order to investigate the
relevance of certain equilibrium concepts for the problem of dynamic spectrum
access in cognitive radio environments. Besides standard Nash equilibrium and
Pareto equilibrium a new approach based on heterogeneous players has been
considered. In this last model players are biased towards several equilibrium
types. This is a more realistic game formulation for interactions in cognitive
radio environments. Numerical experiments indicate the effectiveness of the
proposed approach. The observations may be especially relevant for designing
new rules of behavior for heterogeneous radio environments. Future
experiments include 3-player game modeling for simultaneous spectrum access
and investigation of new equilibrium concepts (e.g. Lorentz equilibrium).
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INTERACŢIUNI ÎN MEDII CU ECHIPAMENTE RADIO COGNITIVE – O
ABORDARE BAZATĂ PE TEORIA COMPUTAŢIONALĂ A JOCURILOR

(Rezumat)

Se prezintă trei modele din teoria computaţională a jocurilor, reformulate
pentru analiza unor scenarii de acces la spectrul radio. Se investighează relevanţa unor
noi tipuri de echilibre pentru această problemă: echilibrele combinate Nash-Pareto şi
Pareto-Nash, alături de echilibrele clasice Nash şi Pareto. Rezultatele experimentelor
numerice pot fi relevante pentru reglementarea interacţiunilor între echipamente radio
cognitive.


