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Abstract. In this paper we consider the class of anti-uniform Huffman
(AUH) codes for sources with infinite alphabet generated by geometric
distribution. Huffman encoding of this source results in AUH codes. As a result
of this encoding, in general, we obtain sources with memory. The entropy and
the average cost of this source with memory are derived. We perform an analogy
between sources with memory and discrete memoryless channels, showing that
the entropy of the source with memory is similar to the mean error of the discrete
memoryless channel. The information quantity, I(X,S), specifies for AUH codes
whether they are with memory or not, as it differs from zero or is equal to zero,
respectively.

Key words: average codeword length; average cost; entropy; Huffman
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1. Introduction

Consider a discrete source with infinite size alphabet, 1 2:(      )ks s s   ,
and associated ordered probability distribution, 1 2:(       )kP p p p  , where
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1 2 ... ...kp p p    It is well known that the Huffman encoding algorithm
(Huffman, 1952) provides an optimal prefix-free code for this source. A binary
Huffman code is usually represented using a binary tree, whose leaves
correspond to the source messages. The two edges emanating from each
intermediate tree node (father) are labeled either 0 or 1. For related literature on
Huffman coding and Huffman trees, we refer the reader to the papers published
by Linder et al., (1997); Capocelli et al., (1991); Gallager, (1978); Johnsen,
(1980); Khorsavifard et al., (2003).

In contrast with the uniform Huffman code, where 1,k jl l  (lk

denotes the length of the codeword associated with the message sk), a code is
called anti-uniform Huffman (AUH) if 1kl k  , for 0,1,2,...k  In this case
the following condition has to be fulfilled (Esmaeili et. al., 2006, 2007):

2
,  1.k i

k i
p p i



 

  (1)

The class of AUH sources is known for their property of achieving
minimum redundancy in different situations. It has been shown by Mohajer et.
al., (2006), that AUH codes potentially achieve the minimum redundancy of a
Huffman code of a source for which the probability of one of the symbols is
known. The AUH codes are efficient codes with minimal average cost in highly
unbalanced cost regime among all prefix-free codes (Mohajer, 2011). These
properties determine a wide range of applications and motivate us to study these
sources from information theoretic perspective. Such sources can be generated
by a several probability distributions. It has been shown that geometric
distribution is among the class of infinite alphabet anti-uniform sources
(Esmaeili et. al., 2006, 2007; Humblet, 1978; Gallager et. al., 1975).

In this paper we consider the AUH structure and derive the average
codeword length, the average information per binary symbol of the source with
memory or code entropy, H(X), as result of Huffman encoding of the discrete
AUH source with geometric distribution, as well as the average cost of the code.

The rest of the paper is organized as follows. In Section 2 we consider
an infinite source with geometric distribution and compute its entropy. For this
source we perform a Huffman encoding and derive the average codeword
length. We also show that employing Huffman coding, in general, a source with
memory results. The average cost of the code is also derived. An analogy
between sources with memory and discrete memoryless channels is proposed.
The information quantity corresponding to mutual information for discrete
channels, I(X,S), specifies for AUH codes whether they are with memory or not,
as it differs from zero or is equal to zero, respectively. We conclude the paper in
Section 3.
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2. The Entropy and the Average Cost of AUH Codes for Sources with
Infinite Alphabet

Let there be a discrete source with infinite alphabet, characterized by the
geometric distribution

( ) ( ) ( ) ( )
0 1 2

( ) ( ) ( ) 2 ( )
0 1 2

:
t t t t

k
t t t t k

k

s s s s
p q p pq p p q p p q


 
 

    

 
 

,          (2)

where q = 1 – p.
Gallager (1975) has shown that geometric distribution with parameter

0 ( 5 1) / 2p   satisfies condition (1) and leads to an AUH code.
The source is complete, because (Larsen, 2001; Corduneanu, 2011)

0
1k

k
p q





 . (3)

After a binary Huffman encoding of this source, the graph in Fig. 1
results, that is, an infinite anti-uniform code. ( )t

ks represents a leaf or a terminal
node in the graph, corresponding to the message ( )t

ks of the source and ( )i
ks

represents the intermediate node, “k”.

Fig. 1 – The graph of Huffman encoding for the source  with distribution in (2).
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The probabilities of terminal nodes are equal to probabilities of the
source messages, ( )t

kp . Unlike a leaf, an intermediate node is not corresponding
to a source message and, therefore, no probability mass is associated. However,
with slight abuse we can call the weight of the intermediate node also
probability.

Considering (3), the probabilities of intermediate nodes ( )i
kp are

obtained recursively, as the sum of the two siblings. In this way, we get

( ) ( )

0
1 ,  ( 0,1,2,...).

k
i t

k j
j

p p k


   (4)

Considering (2) and (4), the probabilities of intermediate nodes are

( ) 1,  ( 0,1,2,...).i k
kp p k  (5)

The structure of codewords resulted in binary Huffman encoding is



0 0

1 1

2 2
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01,
001,

........................
00...01,

........................

k k
k

s c
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s c
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

  

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(6)

The length, kl , of the codeword associated with the message, ( )t
ks , is the

number of edges on the path between the root and the node ( )t
ks in the Huffman

tree

1,  ( 0,1,2,...).kl k k   (7)

The average codeword length (Munteanu, 2007) is determined with

( )

0
.t

k k
k

l p l




 (8)

The average codeword length is obtained substituting (2) and (7) in (8)

0

1( 1) .
1

k

k
l k qp

p





  
 (9)
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The entropy of the source with the distribution given in (2) is

( ) ( )

0
( ) log ,t t

k k
k

H p p




  (10)

where the logarithm function “log” is in base 2.
Considering (2) and (10), the entropy of the source is

( ) log(1 ) log .
1

pH p p
p

    


(11)

Relations (9) and (11) were obtained taking into account that

0
1k

k
p q





 and
0 1

k

k

pkp q
p






 .

We note that the probabilities to deliver the symbols 1 1x  or 0 0x 
depend on the node from which they are generated. In other words, as a result of
Huffman encoding of the source, a source 0 1{ 0, 1}X x x   , with memory, is
generally obtained. Its states correspond to terminal or intermediate nodes
(excluding the root) in the graph in Fig. 1. When a terminal node is reached, the
binary encoding Huffman procedure is resumed from the graph root. Since the
source with the distribution in (2) is complete, the probability of the root is
equal to 1.

The graph attached to this source, denoted by X, can be obtained from
the Huffman encoding graph of the source  , as follows:

a) We link the terminal nodes in the graph of the source  with the root.
b) The branches between successive nodes have the probabilities equal

to the ratio between the probability of the node in which the branch ends and the
probability of the node from which it starts.

c) Each terminal or intermediate node will represent a state, ( )t
kS , or

( ) ,  ( 0,1,2,...)i
kS k  (as it is represented in Fig. 2).

Let ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 1 1 0 1 1{ , ,..., , ,..., , ,..., , ,...}t t t t i i i i

k k k kS S S S S S S S S  be the state set
of the source with memory.

The probabilities of delivering the symbols 0 0x  or 1 1x  from the
state ( )

1,  ( 1,2,...)i
kS k  , corresponding to an intermediate node ( )

1,  ( 1,2,...)i
ks k  ,

are equal to the probabilities of transition from the state ( )
1, ( 1,2,...)i

kS k  , to the
states ( )t

kS and ( ) ,  ( 1,2,...)i
kS k  , respectively, i.e.

( )
1 1( / ) 1 ,  ( 1,2,...)i

kp x S q p k     , (12)

and
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( )
0 1( / ) ,  ( 1,2,...)i

kp x S p k   , (13)

respectively.

Fig. 2 – The graph of the source with memory.

The probabilities of delivering the symbols 1 1x  or 0 0x  from the
state ( ) ,  ( 0,1,2,...)t

kS k  , corresponding to a terminal node, ( ) ,  ( 0,1,2,...)t
ks k  ,

are equal to the probabilities of transition from the state ( ) ,  ( 0,1,2,...)t
kS k  , in

the states ( )
0

tS and ( )
0

iS , respectively, i.e.

( )
1( / ) 1 ,  ( 0,1,2,...)t

kp x S p k   (14)

and

( )
0( / ) ,  ( 0,1,2,...)t

kp x S p k  , (15)

respectively.
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The transition matrix between states is

( ) ( ) ( ) ( ) ( ) ( ) ( )
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Considering relations (12),…, (15), the transition matrix (16) becomes
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0 1 2 0 1

( )
0
( )
1

( )

0 0 0 1 0 0
0 0 0 1 0 0

0 0 0 1 0 0

1

0 0 0 1 0 0

t t t t i i i
k k

t

t

t
k

S S S S S S S
Sp p
Sp p

Sp p

p p

p p

 
  
 
 

 
 
 

 
 
 

 
 
 

T

   

   
   

          
   

          
   

         
   

          

( )
0

( )
1

(17)
i

i
k

S

S 

.





Let ( )t
k and ( )i

k , ( 0,1,2,...)k  , denote the state probabilities
corresponding to terminal or intermediate nodes. They can be determined by
means of relation (Munteanu et. al., 2007; Cover, 1991)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 1 0 1 0 1 0 1[ ... ... ... ...] [ ... ... ... ...]t t t i i i t t t i i i

k k k k               T , (18)

 ( ) ( )

0
1t i

k k
k

 




  . (19)

Considering (8) and (17), from (18) and (19) we get the state
probabilities
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( ) ( )1 ,  ( 0,1,2,...)t t
k kp k

l
   , (20)

( ) ( ) ( )

0

1 1 1
k

i i t
k k j

j
p p

l l




 
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 
 . (21)

Substituting (2) and (4) in (20) and (21), we get the state probabilities

( ) 2(1 ) ,  ( 0,1,2,...)t k
k p p k    , (22)

( ) 1(1 ) ,  ( 0,1,2,...)i k
k p p k    . (23)

Generally, the entropy of the source with memory is computed with
(Cover, 1991)

       
1 1

( ) ( ) ( ) ( ) ( ) ( )

0 0 0 0
( ) log log .t t t i i i

k j k j k k j k j k
k j k j

H X p x S p x S p x S p x S 
 

   

       (24)

Substituting (12),…,(15), (22) and (23) in (24), we get the entropy of
the source with memory

( ) (1 ) log(1 ) log .
1

pH X p p p
p

 
      

(25)

From (7), (11) and (25) we see that H(X), the average information per
symbol, is the ratio between the source entropy and the average codeword
length

( )( ) HH X
l


 . (26)

Let 0c and 1c be the costs associated to the bits 0 and 1, respectively.
The average cost of a code is defined by (Mohajer et. al., 2011)

 ( )
0 0 1 1

0
( ) ( )t

k
k

C p n k c n k c




  , (27)

where we denote by 0 ( )n k and 1( )n k the number of 0’s and 1’s in the codeword
corresponding to the source symbol, ( )t

ks .
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Considering (6), the average cost is

 ( )
0 1

0
.t

k
k

C p kc c




  (28)

We obtain the average cost of the AUH code for the source with
geometric distribution, substituting (2) in (28)

0 1.1
pC c c

p
 


(29)

If we consider that the state set, S, of the source with memory,
represents the field at a discrete memoryless channel input and the symbols
generated by the source with memory represents the field at the channel output,
from (24) it results that the entropy of the source with memory represents the
mean error of the channel with input, S, and output, X, that is, H(X|S).

Making use of this analogy, we can calculate for sources with memory
the information quantities specific to discrete memoryless channels. One of
them, corresponding to mutual information, indicates whether the source is with
memory or not, as it is different from zero or equal to zero

( ) ( )1 1
( ) ( )

( ) ( )
0 0 0 0

log ( , ) log ( , )
( , ) ( , ) ( , ) .

( ) ( )

t i
j k j kt i

j k j kt i
j k j kj k j k

p x S p x S
I X S p x S p x S

p x p x 

 

   

   (30)

We get the joint probabilities as

( ) ( ) ( )( , ) ( | ),t t t
j k k j kp x S p x S (31)

( ) ( ) ( )( , ) ( | ).i i i
j k k j kp x S p x S (32)

Substituting (12),…,(15), (22) and (23) in (31) and (32), we get the joint
probabilities

( ) 3
1( , ) (1 ) ,  ( 0,1,2,...),t k

kp x S p p k   (33)
( ) 2

1( , ) (1 ) ,  ( 1,2,...),i k
kp x S p p k   (34)

( ) 2 1
0( , ) (1 ) ,  ( 0,1,2,...),t k

kp x S p p k   (35)
( ) 1

0( , ) (1 ) ,  ( 1,2,...).i k
kp x S p p k   (36)

We compute the symbol probabilities as

( ) ( )

0 0
( ) ( , ) ( , ),  ( 0,1).t i

j j k j k
k k

p x p x S p x S j
 

 

    (37)
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Substituting the probabilities (33),…,(36) in (37), we get the
probabilities

0( ) ,p x p (38)

1( ) 1p x p  . (39)

Substituting (22), (23), (33),…,(36), (38) and (39) in (30), it results

( , ) 0.I S X  (40)

It is useful to observe that this quantity is equal to zero. This indicates
that the source resulted by binary encoding of the source with geometric
distribution is memoryless.

3. Conclusions

In this paper we have considered an infinite discrete memoryless AUH
source with geometric distribution. Performing a binary Huffman encoding of
this source, we get, in general, a source with memory, because the probabilities
of delivering the symbols x0 = 0 and x1 = 1 in the encoding process depend on
the nodes in the graph from where they are generated. The graph of the source
with memory is obtained from the encoding graph by linking the terminal nodes
with the graph root. The states of the source with memory correspond to the
terminal or intermediate nodes in the encoding graph. We determined the state
probabilities of the source with memory, as well as the transition probabilities
between states. The average information and cost per binary symbol in encoding
process are computed. As the entropy of the source that is to be encoded
measures the average information per codeword, and the code entropy measures
the average information per symbol, their ratio represents the average length of
codewords.

Performing the analogy between discrete sources with memory and
discrete memoryless channels, we compute the information quantity I(X,S),
which indicates whether the source resulted by binary Huffman encoding is
with memory or not.
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SURSE ANTI-UNIFORME INFINITE CU DISTRIBUŢIE GEOMETRICĂ

(Rezumat)

S-a analizat clasa codurilor Huffman antiuniforme pentru surse caracterizate de o
distribuţie geometrică, cu alfabet infinit.Codarea Huffman a acestor surse conduce la
coduri AUH. Ca urmare a acestei codări se obţin, in general, surse cu memorie. Pentru
aceste surse s-a calculat entropia şi costul mediu. S-a efectuat o analogie între sursele
discrete cu memorie şi canalele discrete fără memorie, arătându-se că entropia sursei cu
memorie este similară cu eroarea medie din cazul canalului discret fără memorie.
Mărimea informaţională, I(X,S), indică pentru codurile AUH, dacă acestea sunt sau nu
cu memorie, după cum această mărime este diferită de zero sau nu.


