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Abstract. In this paper are analysed the performances of different
symmetric convolutional turbo codes for a transmission system that uses a
doubly iterative decoding algorithm, with multiple antenna diversity. The turbo
encoder uses an '–QPP (Quadratic–Permutation–Polynomial) interleaver, and
two different decoding algorithms, namely, the Max–Log–APP (Maximum–
Logarithm–A–Posteriori–Probability) algorithm and second, the Log–APP
(Logarithm–A–Posteriori–Probability) algorithm. Also, it was proposed an
increase of the memory of the encoder, from order 2 to 3, to highlight the
improvement of the FER (Frame–Error–Rate) and BER (Bit–Error–Rate)
performances.

Key words: space-time turbo codes; doubly iterative decoder; BER/FER
performances.

1. Introduction

There were analysed the FER (Frame–Error–Rate) and BER (Bit–
Error–Rate) performances obtained for a transmission system of reduced
complexity that uses a doubly iterative decoding algorithm, where the
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component turbo decoder presents an interface to eliminate the space
interference (Biglieri et al., 2005). Previously it was shown that for turbo codes,
the '–QPP (Quadratic–Permutation–Polynomial) interleaver used in this
scheme brings an improvement in the performances compared to those obtained
when using a random interleaver (Rotopănescu & Trifina, 2011). Also, it was
shown that the Log–APP (Logarithm–A–Posteriori–Probability) algorithm
brings performance improvements compared to the Max–Log–APP
(Maximum–Logarithm–A–Posteriori–Probability) algorithm (Rotopănescu &
Trifina, 2011).

Baltă & Kovaci (2004) have made a performance analysis of the
convolutional codes used in different forms of concatenation of classical turbo
codes, for different memory orders and for different decoding algorithms.
Therefore, in this paper is made an analysis of several combinations of
convolutional codes used in turbo codes for the proposed system.

Further, it is presented the system model, then are described the
symmetric convolutional codes chosen for simulations, and finally are given the
simulation results and the conclusions of the paper.

2. System Model

It was considered a mobile communication system with 16 transmission
antennas and 16 receiver antennas, giving a spectral efficiency of 16 bits/s/Hz.
The information bits are turbo-coded and the interleaved bits that give the
encoded vector are serial to parallel converted and mapped into a signal
constellation. The signals at the modulator output are transmitted by each
antenna, at each time instant.

The receiver uses a linear MMSE (Minimum–Mean–Square–Error)
interface. This consists in a linear filter that minimizes the root mean square
error. The additional interleaver is used to remove the correlation between the
transmitted consecutive bits, helping in the decoding process. Its size is chosen
in such a manner that there is no further increase in the system delay. Also, this
is necessary to decorrelate the LLR (Log–Likelyhood–Ratio) of the adjacent
bits.

The transmitter and the receiver block schemes are given Figs. 1 and 2.

Fig. 1 – Transmitter block scheme.

The simulations were performed using QPSK (Quadrature–Phase–
Shift–Keying) modulation (M = 2), for a memory order equal to 2 and then
equal to 3.
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The symmetric turbo codes have the global coding rate 1/2 for memory
2 and 1/3 for memory 3. We use forward and feedback generating polynomials
written in octal form. The space-time code word is a matrix having 130
columns.

Fig. 2 – Receiver block scheme.

The turbo encoder and decoder uses a '–QPP interleaver of length
2080, because this leads to an improved performance for large lengths. The free
term is found by maximizing the corner merit because only the first trellis is
terminated, and the margin effects of trellis termination are avoided. Between
the turbo encoder and the serial to parallel converter will be used a random
interleaver.

The decoder will use either the Max–Log–APP decoding algorithm
with extrinsic information scaling (Trifina et al., 2011) or the Log–APP
algorithm (Rotopănescu & Trifina, 2011). In the analysis when the encoder
memory is 2, we use both decoding algorithms, Max–Log–Log–APP and Log–
APP, and if memory is 3, we use only the Log–APP algorithm.

To eliminate the spatial interference a number of k = 0, k = 1 or k = 4
iterations was used. For the Max–Log–APP decoding algorithm with extrinsic
information scaling, for k = 0 we consider the scaling factor s = 0.9, for k = 1,
s = 0.8 and for k = 4, s = 0.75 (Trifina et al., 2011).

For both cases, when using the Log–APP algorithm, and the Max–Log–
APP algorithm, the turbo decoder performs a number of 10 iterations with
Genie-stopper stopping criterion, meaning that the iterations in turbo decoding
are stopped when the decoded bit frame is identical to the information bit frame
originally coded. Also, the number of distinct blocks with constant fading will
be considered equal to 1.

The value of the signal to noise ratio for which the simulations were
performed was chosen as the largest assumed in simulations (Biglieri et al.,
2005). Thus, for memory 2, for both Max–Log–APP and Log–APP algorithms,
for k = 0, the SNR was considered equal to –5 dB, and for k = 1 and k = 4, the
SNR is –6.5 dB.

For the simulations for which the encoder memory is considered 3, we
use only the Log–APP algorithm. In this case there were performed simulations
for k = 0 to a value of SNR = –5 dB, for a number of blocks, noted in tables



58 Ana-Mirela Rotopănescu and Lucian Trifina

with nb equal to 2,000,000, and we did not find any errors. Thus, it was decided
a smaller value for signal to noise ratio so for k = 0 the value at which
simulations were performed is SNR = –6 dB. For k = 1, SNR = –6.5 dB, and for
k = 4 simulation results were not given because they are degraded compared to
those obtained in the analysis with Log–APP algorithm for memory 2, due to
the relative errors introduced by the doubly iterations .

3. Symmetric Turbo Codes for Antenna Diversity Systems

The polynomial pairs given in octal form are denoted by p1/p2 , where p1

is the forward polynomial and p2 – the feedback polynomial. We assume all
combinations of bits to form the forward polynomials. The feedback
polynomials are chosen so that the first and last bit are equal to 1 for the
feedback in the recursive systematic encoder. Thus, for memory 2, we will
choose the feedback polynomials 5 (101) and 7 (111) and for memory 3 we
choose the feedback polynomials 11 (1001), 13 (1011), 15 (1101) and 17
(1111).

In the tables are given the number of errors, denoted by er, the number
of erroneous blocks, denoted by nber and the number of transmitted blocks
noted with nb.

The BER value is obtained by dividing the number of errors after
decoding to the number of transmitted bits, where the total number of
transmitted bits is equal to the number of transmitted blocks multiplied by the
information frame length. The information frame length is 2,078, for memory 2
and 2,077, for memory 3. The information frame length will be considered
2,077 or 2,078 because the interleaver length is 2,080 and only the first trellis is
finished, and the second is not. In this method a number of bits is added to the
end of the frame equal to the encoder memory order. Obviously these bits are
not information ones and must be subtracted (here 2,080 – 2 = 2,078 and
2,080 – 3 = 2,077). The FER value, both when the memory is 2 as well as when
the memory is 3, is obtained by dividing the number of erroneous blocks to the
number of transmitted blocks.

4. Component Codes Searching from Simulation Results

In Tables 1 and 2 are given the BER and FER performances of various
component convolutional codes, for the case when the memory of the encoder is
2, the decoding algorithm is Max–Log–APP, and the number of doubly
iterations is equal to k = 0, k = 1 and k = 4. In Tables 3 and 4 are given,
respectively, the same performances as in the Tables 1 and 2, except that the
decoding algorithm used is Log–APP. In Table 5 are given the BER and FER
performances obtained in the case when the encoder memory is 3, for a number
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of doubly iterations equal to k = 0 and k = 1.

Table 1
Performances for Max–Log–APP Algorithm for k=0 and k=1
k = 0, SNR = –5 dB k = 1, SNR = –6.5 dB

p1/p2 BER FER er nber nb BER FER er nber nb
1/5 2.29e-2 1.00e+0 47,688,979 1,000,000 1,000,000 3.90e-2 1.00e+0 430,520 5,300 5,300
1/7 2.05e-5 5.21e-3 42,685 5,218 1,000,000 4.42e-4 5.88e-2 92,043 5,887 100,000
2/5 2.29e-2 1.00e+0 47,666,763 1,000,000 1,000,000 3.66e-2 1.00e+0 7,616,152 100,000 100,000
2/7 2.01e-5 4.96e-3 41,933 4,965 1,000,000 4.48e-4 5.623e-1 369,305 22,287 396,000
3/5 3.96e-3 5.65e-1 6,797,396 466,547 824,500 1.20e-2 9.17e-1 2,038,762 74,655 81,400
3/7 1.22e-4 2.35e-2 254,561 23,516 1,000,000 1.50e-3 1.97e-1 3,124,205 197,111 1,000,000
4/5 2.28e-2 1.00e+0 455,518 9,600 9,600 2.66e-2 1.00e+0 210,563 3,800 3,800
4/7 2.04e-5 5.09e-3 42,455 5,092 1,000,000 1.98e-5 3.52e-3 41,277 3,527 1,000,000
5/7 1.08e-7 3.80e-5 225 38 1,000,000 3.90e-6 1.24e-4 8,116 124 1,000,000
6/5 3.94e-3 5.61e-1 8,201,604 561,651 1,000,000 3.51e-3 5.49e-1 730,049 5,4935 100,000
6/7 1.22e-4 2.33e-2 254,587 23,399 1,000,000 1.22e-4 2.54e-2 81,514 8,155 320,400
7/5 4.62e-3 9.69e-1 7,410,426 747,813 771,500 3.59e-3 9.39e-1 746,663 93,948 100,000

Table 2
Performances for Max–Log–APP Algorithm for k=4

k = 4, SNR = –6.5 dB
p1/p2 BER FER er nber nb

1/5 4.04e-2 1.00e+0 5,484,280 65,300 65,300
1/7 2.13e-4 4.46e-2 29,262 2,951 66,100
2/5 3.77e-2 1.00e+0 6,100,071 77,800 77,800
2/7 2.14e-4 4.30e-2 394,802 38,023 884,200
3/5 1.12e-2 9.13e-1 21,164,358 828,390 907,100
3/7 9.21e-4 2.07e-1 1,915,011 207,688 1,000,000
4/5 2.48e-3 1.00e+0 2,092,143 405,600 405,600
4/7 5.22e-7 2.39e-4 652 144 600,600
5/7 1.95e-7 2.00e-6 407 2 1,000,000
6/5 7.60e-4 2.32e-1 1,245,410 183,371 787,700
6/7 4.56e-6 3.81e-3 948 381 100,000
7/5 2.10e-3 8.67e-1 2,444,338 484,265 558,400

Table 3
Performances for Log–APP Algorithm for k = 0 and k = 1

k = 0, SNR = –5 dB k = 1, SNR = –6.5 dB
p1/p2 BER FER er nber nb BER FER er nber nb
1/5 2.30e-2 1.00e+0 4,798 100 100 3.71e-2 1.00e+0 7,724 100 100
1/7 1.64e-5 4.55e-3 736 98 21,500 2.93e-4 3.36e-2 1,814 100 2,976
2/5 2.25e-2 1.00e+0 4,694 100 100 3.63e-2 1.00e+0 3,990,706 52,800 52,800
2/7 1.93e-5 4.67e-3 870 101 21,600 3.55e-4 3.30e-2 69,149 3,094 93,600
3/5 3.66e-3 5.40e-1 11,419 810 1,500 1.00e-2 8.03e-1 68,583 2,650 3,300
3/7 1.12e-4 2.00e-2 586 50 2,500 1.06e-3 9.60e-2 17,208 749 7,800
4/5 2.25e-2 1.00e+0 4,693 100 100 2.61e-2 1.00e+0 4,676,183 86,200 86,200
4/7 1.98e-5 4.82e-3 1,317 154 31,900 9.37e-6 1.35e-3 7,995 557 410,600
5/7 1.11e-7 3.99e-5 435 75 1,877,100 1.21e-6 4.60e-5 2,534 46 1,000,000
6/5 3.43e-3 5.12e-1 2,854 205 400 2.36e-3 3.48e-1 491,999 34,817 100,000
6/7 1.00e-4 1.93e-2 897 83 4,300 5.02e-5 7.12e-3 5,592 381 53,500
7/5 4.46e-3 9.65e-1 665,588 69,211 71,700 3.13e-3 8.94e-1 331,740 45,601 51,000
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Table 4
Performances for Log–APP Algorithm for k = 4

k = 4, SNR = –6.5 dB
p1/p2 BER FER er nber nb
1/5 3.85e-2 1.00e+0 208,089 2,600 2,600
1/7 1.57e-4 1.41e-2 32,659 1,410 100,000
2/5 3.68e-2 1.00e+0 1,587,159 20,700 20,700
2/7 1.66e-4 1.37e-2 34,541 1,378 100,000
3/5 8.83e-3 7.01e-1 411,334 15,720 22,400
3/7 5.83e-4 5.06e-2 121,320 5,068 100,000
4/5 2.39e-2 1.00e+0 139,431 2,800 2,800
4/7 2.30e-7 9.00e-5 48 9 100,000
5/7 9.76e-8 1.00e-6 203 1 1,000,000
6/5 2.62e-4 6.63e-2 2,561 312 4,700
6/7 5.66e-7 1.73e-4 34 5 28,900
7/5 1.71e-3 7.62e-1 8,555 1,830 2,400

For the cases mentioned in Tables 1 and 2 the best performances are
given by the code 5/7 (bold) and the worst performances are obtained for the
code 1/5 (italic).

From these tables we see that the codes that have the feedback
polynomials 7 in octal form lead to better FER and BER performances than
those which have the feedback polynomial equal to 5. The codes that are
denoted as p1/7, can reach the order 10–5 in BER performances, while those in
the form p1/5 can reach a minimum order of 10–3.

When the value of FER performance is equal to 1.00e+0, it means that
the SNR value was chosen too big to calculate a real FER value. For each SNR
value chosen for each k, we see that for the same code p1/7, the FER
performances are better than those obtained for p1/5 codes. This way we see
again the slow performances of the non-primitive feedback polynomials.

From Tables 1 and 2 we see that for the same value SNR = –6.5 dB,
when the number of doubly iterations is k = 4, both FER and BER are better or,
in some cases, are almost equal to those obtained when k = 1. For example, for
the code 5/7, for k = 1, the BER value obtained is 3.90e–6, while for k = 4 the
obtained BER value is 1.95e–7. For k = 1, the FER value is 1.24e–4, and for k =
= 4, is much better, 2.00e–6. A visible improvement can be seen at the code 4/7.
The BER value obtained for k = 1 is 1.98e–5, and for k = 4, is 5.22e–7, and the
FER value is 3.52e–3 for k = 1, and 2.39e–4 for k = 4.

From Tables 3 and 4 are drawn the same conclusions as in the Tables 1
and 2. In these tables, the performance values were obtained when the turbo
decoder uses the Log–APP decoding algorithm. Comparing the obtained BER
and FER performances, for codes p1/p2 , for the same value of k, we see that
these values are better than those obtained in the case when the turbo decoder
uses the Max–Log–APP algorithm.

For example, for code 5/7, using the Max–Log–APP algorithm, for
k = 0, SNR = –5 dB, the obtained BER value is 1.08e–7, while using the Log–
APP algorithm this value is 1.11e–7. Also, under the same conditions, the
obtained FER value when the decoder is using the Max–Log–APP algorithm is



Bul. Inst. Polit. Iaşi, t. LVIII (LXII), f. 1, 2012 61

3.80e–5 and for the second algorithm is 3.99e–5. When k = 1, for the same
code, was obtained a BER value equal to 3.90e–6 for the Max–Log–APP
algorithm and BER = 1.21e–6 for the Log–APP algorithm. When k = 4, the
BER value obtained for the Max–Log–APP algorithm is 1.95e–7, and for the
Log–APP algorithm is 9.76e–8. Comparing the FER values can be seen the
improvements in performance for the Log–APP algorithm compared to the
Max–Log–APP algorithm.

Because the increase of the encoder memory order brings an
improvement in the BER and FER performances, a study was made for this
transmission system, where the encoder memory is increased from 2 to 3.

In Table 5 are given the FER and BER values obtained when the
decoder uses the Log–APP algorithm, due to its superior performances. Also,
there were given the obtained values from simulations only when the number of
doubly iterations is k = 0 and k = 1, because for k = 4 there is a degradation in
the performances obtained for memory 3, compared to those obtained when the
encoder memory is 2, because of the errors introduced by the doubly iterations.

For k = 0, from Table 5 we see that for the case when the encoder
memory is 3, there are two codes that lead to improved performances. The best
BER values are obtained for code 13/15 (bold), and the best FER values are
obtained for the code 15/13 (bold). The worst performances are given by the
codes that have the non-primitive feedback polynomials equal to 17 in the octal
form. One of these codes is 3/17 (italic).

We see again the slow performances of the non-primitive feedback
polynomials, meaning that the p2 polynomial from the form p1/p2 is 11 or 17.
Nevertheless, we see that for the code 17/11 are obtained better BER and FER
values, 9.68e–6 and 1.20e–3, respectively. A BER performance of order 10–4

and FER performance of order 10–2 , even if the feedback polynomial is non-
primitive (11) is given by codes 3/11, 6/11, 13/11, 14/11 or 15/11.

For k = 1, we see that the best performances are given by the code
12/15. Also we can see that those codes that are composed by the primitive
feedback polynomial 15 or 13 in octal form lead to good BER and FER
performances. These codes are 12/13, 14/15, 14/13, 13/15, 15/13, etc. Also, the
codes that have the primitive feedback polynomials 15 give better performances
that those that have the primitive feedback polynomials 13. The worst
performances are given by the code 3/17.

Generally, the codes that have the non-primitive feedback polynomials
11 or 17 lead to slow performances. As in the previous case, when k=0, we see
that there are some codes with the non-primitive feedback polynomial 11 that
give better performances, as the codes 6/11, 12/11, 13/11, 14/11 and 17/11.

For k = 0, the improvement of the performances brought by the increase
of the memory order is clearly observed from the case when the decoder uses
the same type of decoding algorithm, Log–APP. At SNR = –6 dB, for the codes
that give the best performances for  memory 3, namely 13/15 and 15/13, the
BER and FER values are close to those obtained for the best code of memory 2,
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5/7 at SNR = –5dB. At this value (SNR = –5 dB), for the code of memory 3,
15/13, simulations were performed for k = 0 and a number of blocks equal to
2,000,000 and were not found any errors. It results that the BER and FER
performances obtained in the case of memory 3 are much better than in memory
2 case.

Table 5
Performances for Log–APP Algorithm for k = 0 and k = 1
k = 0, SNR = –6 dB k = 1, SNR = –6.5 dB

p1/p2 BER FER er nber nb BER FER er nber nb
1/13 4.55e-5 2.86e-3 1,651 50 17,445 6.16e-5 2.19e-3 2,916 50 22,780
1/15 4.01e-5 2.80e-3 1,488 50 17,828 6.63e-5 2.76e-3 2,498 50 18,113
1/17 1.17e-2 9.25e-1 1,315 50 54 8.23e-3 8.47e-1 1,009 50 59
2/11 1.39e-2 1.00e+0 1,451 50 50 1.08e-2 8.92e-1 1,267 50 56
2/13 4.60e-5 2.78e-3 1,718 50 17,962 1.16e-4 3.16e-3 3,832 50 15,804
2/15 5.02e-5 2.77e-3 1,879 50 18,017 1.06e-4 2.87e-3 3,842 50 17,363
3/11 7.10e-4 7.65e-2 964 50 653 2.71e-4 3.00e-2 938 50 1,666
3/13 1.06e-5 7.34e-4 1,506 50 68,059 2.24e-5 6.28e-4 3,711 50 79,601
3/15 7.66e-6 5.39e-4 1,474 50 92,605 1.75e-5 4.66e-4 3,903 50 107,102
3/17 3.29e-2 1.00e+0 3,423 50 50 3.60e-2 1.00e+0 3,746 50 50
4/11 1.36e-2 9.61e-1 1,472 50 52 1.19e-2 8.62e-1 1,442 50 58
4/13 5.16e-5 3.04e-3 1,762 50 16,426 1.31e-4 3.87e-3 3,524 50 12,901
4/15 3.88e-5 2.85e-3 1,411 50 17,489 8.04e-5 2.71e-3 3,079 50 18424
5/13 5.03e-6 3.47e-4 1,502 50 143,693 1.35e-5 3.23e-4 4,349 50 154,371
5/15 3.88e-6 2.78e-4 1,450 50 179,494 1.21e-5 3.29e-4 3,834 50 151,849
5/17 1.21e-2 9.61e-1 1,314 50 52 9.14e-3 7.04e-1 1,348 50 71
6/11 6.25e-4 6.46e-2 1,004 50 773 1.40e-4 2.02e-2 721 50 2,470
6/13 7.51e-6 5.16e-4 1,510 50 96,717 1.84e-5 5.94e-4 3,221 50 84,101
6/15 9.41e-6 5.95e-4 1,641 50 83,920 2.06e-5 4.60e-4 4,652 50 108,633
6/17 3.28e-2 1.00e+0 3,410 50 50 2.64e-2 1.00e+0 2,749 50 50
7/11 1.29e-2 9.61e-1 1,395 50 52 8.12e-3 8.19e-1 1,029 50 61
7/13 1.56e-5 1.34e-3 1,209 50 37,093 4.11e-5 1.22e-3 3,474 50 40,666
7/15 2.24e-5 1.38e-3 1,685 50 36,213 3.90e-5 1.22e-3 3,323 50 40,939

10/13 5.31e-5 2.64e-3 2,088 50 18,915 2.18e-6 8.66e-5 2,147 41 472,900
10/15 4.37e-5 2.46e-3 1,843 50 20,272 2.07e-6 8.10e-5 1,805 34 419,500
10/17 1.08e-2 9.43e-1 1,196 50 53 2.35e-3 3.93e-1 621 50 127
11/13 3.37e-6 1.48e-4 2,369 50 337,754 2.87e-6 6.17e-5 4,648 48 777,100
11/15 3.91e-6 1.28e-4 3,173 50 390,494 3.81e-6 5.85e-5 1,759 13 222,000
11/17 9.14e-3 1.00e+0 950 50 50 2.84e-3 8.62e-1 343 50 58
12/11 2.75e-3 2.29e-1 1,248 50 218 4.52e-5 5.19e-3 904 50 9,627
12/13 6.32e-6 3.69e-4 1,778 50 135,441 8.87e-7 2.76e-5 1,200 18 651,300
12/15 4.76e-6 3.35e-4 2,237 76 226,200 6.47e-7 2.31e-5 464 8 345,100
13/11 1.00e-4 3.44e-2 304 50 1,452 1.70e-6 5.27e-4 336 50 94,855
13/15 1.40e-6 4.76e-5 1,225 20 419,900 2.18e-6 4.96e-5 1,097 12 241,800
13/17 2.49e-4 9.52e-2 272 50 525 4.81e-6 2.17e-3 138 30 13,800
14/11 7.51e-4 6.89e-2 1,131 50 725 8.62e-6 1.14e-3 784 50 43,788
14/13 8.62e-6 7.66e-4 1,169 50 65,250 1.20e-6 2.81e-5 1,599 18 640,100
14/15 8.34e-6 4.70e-4 1,841 50 106,247 1.14e-6 3.16e-5 3,816 51 1,609,906
14/17 3.32e-2 1.00e+0 3,458 50 50 2.36e-2 1.00e+0 2,453 50 50
15/11 1.02e-4 4.09e-2 259 50 1,221 2.78e-6 5.38e-4 172 16 29,700
15/13 1.61e-6 3.75e-5 1,611 18 480,000 2.36e-6 4.77e-5 927 9 188,600
15/17 3.00e-4 7.27e-2 429 50 687 3.54e-6 1.42e-3 217 42 29,500
16/13 2.25e-5 1.36e-3 1,721 50 36,682 1.78e-6 1.98e-4 931 50 251,800
16/15 2.03e-5 1.40e-3 1,501 50 35,528 1.73e-6 6.55e-5 2,700 49 747,700
17/11 9.68e-6 1.20e-3 832 50 41,354 1.78e-6 5.66e-5 131 2 35,300
17/13 3.19e-6 8.53e-5 3,884 50 585,750 3.42e-6 6.01e-5 5,086 43 714,500
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Comparing the obtained values for k = 1, for SNR = –6.5 dB, and Log–
APP algorithm, for codes that give the best performance, i.e. 5/7 for memory 2
and 12/15 for memory 3, there can be seen the premise from which we started
this analysis, meaning that the increased order of memory of the encoder
improves the performances. Thus, we see that for the code 5/7, the obtained
BER value is 1.21e–6 and for code 12/15 the BER value is 6.47e–7. Also, the
FER value is 4.60e–5 for code 5/7 and 2.31e–5 for code 12/15.

5. Conclusions

The performances of different symmetric convolutional codes used in
turbo decoding, in a limited-complexity doubly iterative decoder, are analysed.
In the transmission system that presents a spatial interference canceling
interface (an iterative MMSE receiver), the decoder uses a '–QPP interleaver,
and the simulations were performed for a Max–Log–APP and also a Log–APP
turbo decoding algorithm. Also, the encoder memory is supposed to be 2 and 3.
A doubly-iterative decoding process is used, scaling both the extrinsic
information of the turbo decoder and the information at the input of the
interference canceling block. Up to four iterations were used to cancel the
spatial interferences. The simulation results show that the performances
obtained in the case when the Log–APP algorithm is used, are much better that
those obtained in the case of the Max–Log–APP algorithm. Also, the increase
of the encoder memory to the order 3 leads to better FER and BER
performances compared to those when the order of the encoder memory is 2.
Another conclusion is that the codes that are built from feedback primitive
polynomials lead to better performance than those with non-primitive feedback
polynomials.
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ASUPRA UNOR CODURI CONVOLUŢIONALE SIMETRICE DE MEMORIE
DOI ŞI TREI FOLOSITE ÎN CODAREA TURBO SPAŢIO-TEMPORALĂ

(Rezumat)

Sunt analizate performanţele diferitelor coduri turbo convoluţionale simetrice
pentru un sistem de transmisie cu diversitate de antene, care foloseşte un algoritm de
decodare dublu iterativ. Folosind un interleaver '–QPP şi doi algoritmi diferiţi de
decodare, Max–Log–APP şi Log–APP, s-a constatat că performanţele obţinute în cazul
în care este folosit cel de al doilea algoritm sunt mult mai bune decât cele obţinute în
cazul în care se foloseşte algoritmul Max–Log–APP. De asemenea, creşterea memoriei
codorului la ordinul 3 a condus la performanţe FER şi  BER mai bune decât atunci când
ordinul memoriei codorului este 2. Din simulări s-a observat că acele coduri care sunt
construite după polinoame de reacţie primitive conduc la performanţe mai bune decât
cele care sunt construite după polinoame de reacţie neprimitive.


