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Abstract. The eddy currents in a straight cylindrical conductor, having a
circular section, situated in a  homogeneous, periodical, non-harmonic magnetic
field, having the same direction as the conductor’s axis, were studied. The
performed study is based on a symbolical method which permits to represent the
periodical non-harmonical signals through hypercomplex “images”. Using this
proceeding the hypercomplex moduli of electromagnetic field’s state vectors are
determined in a point situated inside the cylindrical conductor. Firstly were
determined these hypercomplex moduli of field’s state vectors produced,
separately, by the low, medium and high order harmonics, of the external
magnetic field. The resultant expressions of these moduli are obtained applying
the superposition theorem, considering that the cylindrical conductor has a linear
behavior in the electromagnetic field.
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1. Introduction

In a previous paper (Rosman, 2011) the electromagnetic field produced
by eddy currents in a conducting plate having a rectangular section, situated in a
homogeneous magnetic field, periodically variable, but non-harmonic, in time,
was studied.

The aim of this paper is to study the analogous problem referring to
eddy currents induced in a straight cylindrical conductor, infinitely long, having
a circular section. Such a conductor is considered having the radius of the
straight section a (Fig. 1), being situated in a homogeneous magnetic field, H0 ,
oriented parallel to the cylindrical conductor’s axis. It is supposed that the
considered conductor is situated sufficiently far with respect to other conductors
through which currents are flowing, so that the proximity effect may be
neglected.

Fig. 1

If the external magnetic field’s intensity is variable
vs. the time according to a harmonic law,

0 0( ) 2 sint H tH k , the electromagnetic field’s state
vectors complex moduli inside the conductor have the
following complex RMS values (Moraru, 1984):
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with r  [0, a], and
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γ being the complex propagation constant, α – the attenuation constant (equal
with the phase constant, β), μ, σ – conductor’s material constants considered
invariable with respect to external magnetic field intensity, I0 and I1 – modified
Bessel functions of first species and zero, respectively first order, H0 – the
external magnetic field’s intensity complex RMS value.

The complex Poynting vector modulus in a point situated on the
conductor’s surface, corresponding to the length unit of this one, is
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which permits to perform the active and reactive powers, Pl and Ql ,
corresponding to the conductor’s length unit too.

The functions I0(m) and I1(m) admit the series developments (Gray &
Mathews, 1958)
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with m = γr, γa. If from these series only the first two terms are retained
relations (1) become
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and expression (3) leads to
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Relations (5) and (6) represent approximations acceptable at low
frequencies. In the case of high frequencies functions I0(m) and I1(m) may be
approximated with theirs asymptotic values (Gray & Mathews, 1958)
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so relations (1), (2) may be approximated at their turn with
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In what follows the material constants (σ, μ) dispersion with the
frequency is neglected.
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2. Study Method

As was indicated in a previous paper (Rosman, submitted) the study of
eddy currents in periodical non-harmonic steady-state is advantageous to be
performed using a symbolic method, proposed by B.A. Rozenfeld (1949),
which is based on periodical non-harmonic signals representation through
hypercomplex “images”. So, to a periodical non-harmonic signal, a(t), which
admits the development in Fourier series
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may be attached the hypercomplex “image”
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where functions 1k , jk are orthonormalized. The so defined algebra is
commutative, representing a direct sum of real numbers field (generated by 10)
and the numberable set of complex numbers set (generated by the pair 1k , jk).
The unit element of this algebra is
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The elements 1k , jk satisfy in the same time the relations
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is satisfied too by the signals hypercomplex “images”, what renders evident the
remarkable property of this symbolic method to “algebrize” the differential
operations with regard to time. It results that to integro-differential eqs. satisfied
by periodical non-harmonic signals correspond algebraic eqs. satisfied by these
signals “images”.
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3. Hypercomplex Vectors Êint(r), Ĥint(r), Ĵ(r) and Ŝ(a)

Denoting with Êint(x), Ĥint(x) and Ĵ(x) the hypercomplex state vectors of
an electromagnetic field in periodical non-harmonic steady state, in a point at a
distance x  [0, a] from cylindrical conductor’s axis, situated in a homogeneous
external magnetic field having the intensity a periodical but non-harmonic
function of time which admits the development in a Fourier series
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the hypercomplex expressions of field’s state vectors moduli are similar to
relations (1) with the specification that γ must be substituted with (Rosman,
1977)
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which represents the hypercomplex propagation constant, αk being the
attenuation constant (equal with the phase constant) of external’s magnetic field
k rank harmonic. In the same time H0 must be substituted too with
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representing the hypercomplex RMS value of the same magnetic field. In these
conditions eqs. (1) may be substituted with
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so that Poynting vector’s hypercomplex modulus related to cylindrical
conductor’s length unit, in a point situated on his surface (s. rel. (2)), is

 
 

2
10

0

ˆIˆˆ ( ) .
ˆIl
aHS a
a


 

   (19)

As was established in a previous paper (Rosman, 1960) it is possible to
define, in periodical non-harmonic steady-state, a hypercomplex apparent
power
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represent the active, respectively the reactive power corresponding to all
harmonics. It is easy to observe that

ˆˆ 2 ( ),l ls aS a (22)
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where relation (19) was taken into account. In this stage exists the possibility to
perform the calculus of the active power, Pl , and of the reactive power, Ql ,
which correspond to cylindrical conductor’s length unit.

If the external magnetic field’s fundamental frequency is enough low, in
her frequency spectrum may be marked three domains in which the eddy
currents produced by the external magnetic field’s harmonics are different from
a qualitative point of view namely: a) the domain [0, pf], in which the
harmonics frequencies are sufficiently low, being necessary to retain only two
terms from the series development (4); b) the domain [pf, qf], in which the
harmonics have medium values, in this case being necessary to take into
account all the terms of series (4); c) the domain [qf, ∞) of harmonics having
high frequencies, when functions I0(m), I1(m) can be approximated with theirs
assymptotical values (s. rel. (7)).

3.1. Case of External Magnetic Field’s Intensity Low Order Harmonics

The contribution of external magnetic field’s intensity harmonics
having low frequencies, at eddy currents engendering, induced in a cylindrical
straight conductor may be estimated retaining for the functions I0(m), I1(m)
series developments (s. rel. (4)) only the first two terms. The electromagnetic
field’s state vectors hypercomplex moduli, produced inside the conductor, may
be determined using relations having the form (5) where γ is substituted with
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Amplifying, in the right member of each relation, with the

denominator’s hypercomplex conjugate, 2
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In the same time Poynting vector’s hypercomplex modulus, related to cylindrical
conductor’s length unit, is
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Having in view relations (19),…,(22), the expressions of active and reactive
powers corresponding to the conductor’s length unit, in a point situated on her
surface, may be determined, namely
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Taking into account that the material constants (σ, μ) dispersion with the
frequency is neglected, relations (29) become
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But (Ryžik & Gradshtein, 1951)
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3.2. Case of External Magnetic Field’s Intensity Medium Order Harmonics

For  the  external  magnetic  field’s  harmonics  order comprised in
range [pf, qf], q > p > 1, f being the fundamental’s frequency, the
electromagnetic field’s state vectors hypercomplex RMS values inside the
cylindrical conductor may be determined with relations (20), where Ĥ0 is
substituted with

' ''
0

ˆ 1 j
q q

pq k k k k
k p k p

H H H
 

   (35)

and ̂ with

 ˆ j 1 j
q q

pq k k k k
k p k p

k  
 

    , (36)

so that

 
 

 
 

 
 

1 00
int int 0

0 0

1
0

0

ˆ ˆ ˆI Iˆˆ ˆ ˆ( ) ,   ( ) ,
ˆ ˆI I

ˆIˆ ˆˆ( ) .
ˆI

pq pqpq pq
pq pq pq

pq pq

pq
pq pq pq

pq

r rH
E r H r H

a a

r
J x H

a

 
  






   

 

(37)

In the same time
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Having in view relations (19),…,(26) it is possible to determine the
expressions of active and reactive powers on cylindrical conductor’s surface and
on his length unit
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3.3. Case of External Magnetic Field’s Intensity High Order Harmonics

In such a case the electromagnetic field’s state vectors hypercomplex
moduli inside the cylindrical conductor, produced by the external magnetic
field’s intensity harmonics of order [q, ∞), q > p, may be determined, using
relations of type (8), substituting Ĥ0 with
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Also, in accordance with relation (9) it results that Poynting vector’s
hypercomplex modulus, related to cylindrical conductor’s length unit, in a point
situated on her surface, is
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As regards the expressions of the corresponding active and reactive
powers, having in view, in addition, relations (20),...,(22), these ones are
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when are considered only the harmonics till the n > q order.

3.4. General Case

In view to determine the expressions of electromagnetic field’s state
vectors hypercomplex values inside the cylindrical conductor, as well as of the
active and reactive powers related to conductor’s length unit, in a point situated
on the surface of this one, it is necessary to apply the superposition theorem.
More precisely the contributions of low, medium and high order harmonics of
magnetic external field are added, namely

int int int int

int int int int

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ),

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ),

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ).
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   

(46)

Substituting in relation (46) the components int
ˆ ( )pE x , int

ˆ ( )pqE x ,...,
ˆ ( )qJ x with expressions (26), (37) and (43) it results
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Using a similar proceeding regarding the active and reactive power,
may be written the relations

,   .l lp lpq lq l lp lpq lqP P P P Q Q Q Q      (50)

If, in these relations, are substituted , ,...,lp lpq lqP P Q with expressions (33), (39),
(451), respectively (34), (392), (452) it results
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(52)

In the above relations were considered only the first n > q harmonics of the
external magnetic field intensity. The explicit expressions of active power Plpqk
and reactive power, Qlpqk , are, unfortunately, quite difficult to obtain.
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3.5. Particular Case

If the external magnetic field’s fundamental term frequency is
sufficiently high, the electromagnetic field’s state vectors hypercomplex
moduli, in a point situated inside the cylindrical conductor, produced by the
eddy currents, may be determined in the whole using relations (8) substituting γ
with ̂ (rel. (16)) and H0 with Ĥ0 (rel. (17)). This way expressions

     ˆ ˆ ˆ0
int int 0 0

ˆˆˆ ˆ ˆ ˆ ˆˆ( ) e ,  ( ) e ,  ( ) er a r a r aH a a aE r H r H J r H
r r r

  



       (53)

are obtained. Also, using the same proceeding relation (9) becomes

2
0

ˆˆˆ ( ) ,l
HS a 


  (54)

so that, having in view relations (20),...,(23), may be established the expressions
of active and reactive powers related to cylindrical conductor’s length unit
namely

2 2
0 0

0 0
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2 2
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l l
k k

P a H k Q a H k 
 

 

     (55)

considering this time only the first n harmonics of the external magnetic field.
It is possible to define, in this particular case, the hypercomplex

impedance waves impedance (Rosman, 2010)
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int 0
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

 




      , (56)

which is independent with respect to distance r, where relation (53) was taken
into account.

4. Conclusions

The eddy currents induced in a straight cylindrical conductor having a
circular section, situated in a homogeneous magnetic field, having a periodical,
non-harmonic variation in time, oriented in the conductor’s axis direction, are
determined.

The performed study is based on a symbolic proceeding, which permits
the representation of periodical, non-harmonic signals, through hypercomplex
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“images”. The electromagnetc field’s state vectors hypercomplex moduli,
Êint(r), Ĥint(r), Ĵ(r), r  [0, a], are determined, a being the radius of the straight
conductor’s section. In the same time the Poynting’s vector’s hypercomplex
modulus is determined too, permitting to obtain the expressions of the active
and reactive powers related to cylindrical conductor’s length unit.

The determination of these hypercomplex moduli are performed
separately for external magnetic field’s intensity harmonics of low, medium and
high order. The final expressions of hypercomplex moduli, Êint(x), Ĥint(x), Ĵ(x)
and Ŝ(a), are obtained applying the superposition theorem, supposing that the
cylindrical conductor’s material has a linear behavior in the electromagnetic
field.
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CURENŢII TURBIONARI ÎNTR-UN CONDUCTOR CILINDRIC DREPT,
DE SECŢIUNE CIRCULARĂ, ÎN REGIM PERMANENT PERIODIC

NEARMONIC

(Rezumat)

Se studiază curenţii turbionari induşi într-un conductor cilindric drept situat
într-un câmp magnetic omogen coaxial cu conductorul. Studiul efectuat se bazează pe o
metodă simbolică elaborată de B.A. Rozenfeld, care permite reprezentarea semnalelor
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periodice nearmonice prin „imagini” hipercomplexe. Folosind acest procedeu se
determină modulii hipercomplecşi ai vectorilor de stare Êint(x), Ĥint(x), Ĵ(x), ai
câmpului electromagnetic, într-un punct situat în interiorul conductorului cilindric. De
asemenea se determină şi modulul vectorului Poynting într-un punct situat pe suprafaţa
conductorului corespunzător unităţii de lungime a acestuia. Aceşti moduli
hipercomplecşi se determină separat, pentru armonicile joase, medii şi înalte ale
intensităţii câmpului magnetic exterior. Expresiile rezultante ale modulilor
hipercomplecşi ai vectorilor de stare se determină aplicând teorema suprapunerii
considerând că materialul conductor din care este confecţionat conductorul cilindric se
comportă liniar în câmpul electromagnetic.


