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Abstract. Using a new restructuring input sequence and appropriate index 
mappings we have reformulated 1-D discrete sine transform (DST) in such a way 
that a new efficient VLSI algorithm for a prime-length DST is obtained. The 
proposed algorithm uses some modular and regular computational structures 
called pseudo-circular correlations that can be computed in parallel, thus 
resulting a high throughput and efficient VLSI implementation. The proposed 
algorithm can be mapped into a linear systolic array with high performances. 
High computing speed with low I/O cost characterized by a small number of  I/O 
channels placed at the two ends of the linear array have been obtained. The 
resulting VLSI architecture is highly regular and modular with local connections 
and have a small hardware complexity of the pre-processing and post-processing 
stages. 
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1. Introduction 
 

The discrete sine transform (DST) together with discrete cosine 
transform (DCT) (Ahmed et al., 1974; Jain, 1976, 1980) are important 
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transforms used in many digital signal processing applications. Being good 
approximations to the statistically-optimal Karhunen-Loeve transform, they are 
used especially in speech and image transform coding (Jain, 1980; Zhang et al., 
2007), but also in other transform coding applications as DCT based subband 
decomposition in speech and image compression (Chen, 2007), or video 
transcoding (Fung & Siu, 2006). Some other important applications are: block 
filtering (Martucci & Mersereau, 1993), transform-adaptive filtering (Pei & 
Tseng, 1996; Mayyas, 2005) and filter banks (Bergen, 2008). 

The DST represents a good approximation of the statistically optimal 
Karhunen-Loeve transform and for low correlated images generates better 
results as compared with DCT. Although the usual transform length in block 
transform coding is 8 or 16 we can use a prime transform length of 11 or 17 and 
an overlapping technique in order to reduce blocks artifacts. Also , it is useful to 
have a prime DST length or a composite transform length were the factors are 
mutually prime. A prime factor could be a more suitable transform length for 
some specific applications than a power of two (Tasaki et al., 1995) and there 
are in the literature efficient algorithms for an efficient implementation of a 
prime-factor DST length (Chiper et al., 2002). Also, there is the possibility to 
combine prime-factor algorithms for an efficient implementation of the DST 
transform for composite-lengths (Kar & Rao, 1994). 

Due to the fact that DST is computational intensive it is necessary to 
design new algorithms or to restructure the existing ones in order to accelerate 
the execution of this transform through VLSI implementation. The efficiency of 
a VLSI implementation is greatly due to the data movement and transfer 
existing in the algorithm. This has been already proved by several 
implementation solutions that have been proposed for a VLSI implementation 
using cyclic convolution (Chiper et al., 2005) or circular correlation (Chiper et 
al., 2002). The circular correlation is well suited for a VLSI implementation 
using distributed arithmetic (White, 1989) or systolic arrays (Kung, 1982) due to 
the fact that they avoid complicated data routing and management leading thus 
to efficient VLSI implementation with a regular and modular structure. 

Systolic arrays can exploit the advantages offered by the VLSI 
technology, especially through modularity, regularity and short and local 
interconnections representing thus an interesting architectural paradigm for the 
VLSI implementation of our proposed VLSI algorithm. The I/O bottleneck has 
been reduced by repeatedly using of the input data in the systolic array. In the 
same time systolic arrays are well suited for real time implementations due to 
the fact that they can efficiently exploit the concurrency existing in the VLSI 
algorithm. All the above mentioned advantages of the circular correlation can be 
extended to pseudo-circular correlation, where the differences in sign are 
managed using the control-tag scheme.  

In this paper we introduce a new restructuring sequence that is used to 
appropriately reformulate 1-D DST into an efficient VLSI algorithm. The new 
systolic array algorithm is based on two regular and modular computational 
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structures called pseudo-circular correlations, that can be computed in parallel 
resulting thus a high throughput VLSI implementation. We have a single input 
restructuring sequence as opposed to a previous paper (Chiper et al., 2005), 
where two such auxiliary sequences are used. This results into a significantly 
reduction of the chip area occupied by the pre-processing stage that for 
relatively short DST transforms represents an important overhead. The 
differences in sign involved by the pseudo-circular correlations can be 
efficiently managed using the tag control scheme. The resulting VLSI 
architecture that can be obtained with the proposed VLSI algorithm has some 
important advantages as regularity, modularity, low I/O cost and a reduced data 
management scheme.  

The rest of the paper is organized as follows: in Section 2 a low 
complexity reformulation of the DST transform based on pseudo circular 
correlation structures is presented. În Section 3 it is presented an example of the 
new VLSI algorithm for 1-D DST of length N = 11. In Section 4 we discuss 
some implementation aspects of the proposed VLSI algorithm using the systolic 
array architectural paradigm. Conclusions are presented in Section 5. 
 

2. Systolic Algorithm for 1-D DST 
 

1-D  DST  is defined as follows: 
 

1

0

2( ) ( )sin[(2 1) ]
N

i
Y k x i i k

N






  , (k = 1,…,N),              (1) 

         
with  

N2
  ,                                             (2) 

 
where the input sequence ( ),  ( 0,1,..., 1)x i i N  is a real input sequence. 

In order to simplify the presentation, the constant 2 N from the eq. (1) 
can be dropped and  a multiplier will be added at the end of the VLSI systolic 
array to scale the output sequence with this constant.  

As opposed to a previous paper (Chiper et al., 2005), where have been 
used two input restructuring sequences to reformulate relation (1) as a parallel 
decomposition, we will introduce a single new input restructuring sequence to 
do a such decomposition while preserving the regularity and the modularity of 
the computational structures. Further, we’ll use the symmetry of DST kernel and 
the properties of the Galois Field of indexes to obtain the desired computational 
structures that have been called pseudo-circular correlations. 

The new input restructuring sequence,  ( ),  ( 0,1,..., 1)sx i i N  , is 
defined as follows:  
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( 1) ( 1)sx N x N   ,                                         (3) 

 
( ) ( 1) ( ) ( 1)i

s sx i x i x i    , ( 2 0)i N ,...,  .                    (4) 
          

Further on, we can reformulate (1) namely 
 

( ) (0)sY N x ,                                        (5) 
 

( ) (0)sin( ) ( )cos( )sY k x k T k k   , (k = 1,…,N – 1).                  (6) 
      

We have introduced a new auxiliary output sequence, 
 ( ), ( 1 2 1)T k k , ,...,N  , that can be computed in parallel as two pseudo-
circular correlations, if the transform length, N, is a prime number, as following: 
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with          

 
( ) ;k

N
k g  here Nx   denotes the result of x modulo N.       (10) 

 
Relations (9) and (10) define some index mappings based on the 

properties of the Galois Field of indexes.  

3. Example  

 In the followings we will consider an example for 1-D  DST with the 
length N = 11 and the primitive root g = 2, to illustrate the proposed VLSI 
algorithm. Firstly, we compute the restructuring input sequence, 
 ( ),  ( 0,..., 1)sx i i N  , as following: 
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(10) (10),sx x                                             (12)  

 

( ) ( 1) ( ) ( 1),  ( 9,...,0).i
s sx i x i x i i                                  (13) 

         

Using the sequence  ( ),  ( 0,..., 1)sx i i N  ,we can  write (7) and (8) in 
a matrix-vector product form as 
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where we have noted s(k) for 2sin(2kα).  

The index mappings, δ(i) and γ(i), in eqs. (7) and (8), realize a partition 
into two groups of the permutation of indexes {1,2,3,4,5,6,7,8,9,10}. They are 
defined as follows: 

 
 ( ) :1 2, 2 4, 3 8,4 6, 5 10 ,i                          (16) 

 
 ( ) :1 9, 2 7, 3 3,4 5, 5 1 .i                            (17) 

 
The functions μ(k,i) and ν(k,i) define the sign of terms in eqs. (14) and 

(15), respectively. They are defined as follows: a) μ(k,i) is defined by the matrix 
 

 

0 0 1 1 1
0 1 0 0 1
1 0 1 0 1
1 0 0 1 1
1 1 1 1 1
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 
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 
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and b) ν(k,i) is defined by the matrix 
 

1 1 0 1 0
1 0 1 1 1
0 1 0 0 0
0 0 0 1 0
0 0 0 1 0

 
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. 

 
Finally, the output  sequence,   ( ),  ( 1,2,..., 1)Y k k N  , can be  

computed as follows: 
 

(1) (0)sin[ ] (1)cos[ ],
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s

s

s

Y x T
Y x T
Y x T


 
 
 

 
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(11) (0).sY x                             (19) 
 

 4. An Analyse of the VLSI Implementation 

Using the proposed algorithm and a data dependence-graph based 
synthesis procedure we can obtain a linear systolic array as will be seen in the 
following. First, we can map eqs. (14) and (15) into two linear systolic arrays 
that represent the hardware-core of the architecture used for the VLSI 
implementation of the proposed algorithm. In eqs. (14) and (15) there are some 
differences in sign that can be managed using the tag-control mechanism (Jen & 
Hsu, 1988) well suited for the systolic array architectural paradigm. The 
obtained processing elements consists of a multiplier, an adder and some 
multiplexers used to manage the differences in sign in eqs. (14), (15), 
respectively. The multipliers for the processing elements located in the same 
position in the two systolic arrays use the same operand. This aspect can be 
further used to obtain an important hardware reduction complexity using an 
appropriate hardware sharing method. 
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The proposed VLSI architecture can be implemented using a two level 
pipelining by internally pipelining the adders and multipliers. Thus, the 
throughput can be significantly increased as compared with the proceeding used 
in a previous paper (Chiper et al., 2005), where such a mechanism can not be 
incorporated. Using the tag-control mechanism it is possible to place all I/O 
channels at the two extreme ends of each systolic array as shown by Guo et al. 
(1993), where the tag bits used in this mechanism can control the internal 
registers using only I/O channels placed at the two ends of the linear systolic 
array. Due to the fact that each input data is used in each processing element the 
I/O cost has been significantly reduced. This aspect is very important in 
designing systolic arrays as the so called I/O bottleneck, can seriously limit the 
speed performances of the design. 

The input sequence is computed in the pre-processing stage using eqs. 
(3) and (4). In the same module we have to appropriately permute this input 
sequence. First, we have to reverse the order of the input data in order to 
compute eq. (4) and then we have to change the order of the obtained sequence 
with the view to obtain the desired auxiliary input sequence in the desired order, 
as shown in (10). These operations are obtained using a RAM with N words. In 
the paper published by Chiper et al. (2005) the number of RAMs and adders is 
doubled as compared with the proposed solution in this paper. 

In the post-processing stage we have to reorder the auxiliary output 
sequence  ( ),  ( 1,2,..., 1)T k k N   using the index mappings (16) and (17). 
Then, we will compute the output sequence ( )Y k as shown in eqs. (18) using 
two multipliers. In a previous paper (Chiper et al., 2002) there where used four 
such multipliers to compute the final output sequence. 
 

5. Conclusions 
 

In this paper it has been introduced a new restructuring input sequence 
that  together  with appropriate index mappings have been used to reformulate 
1-D DST into an efficient VLSI algorithm. The proposed algorithm is based on 
some regular and modular computational structures called pseudo-circular 
correlations. These computational structures are computed in parallel resulting a 
high throughput. The proposed VLSI algorithm can be mapped on a linear 
systolic array with a high processing speed at a low I/O cost. Moreover, using 
the proposed VLSI algorithm, the hardware complexity of the pre-processing 
and post-processing stages can be substantially reduced. 
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UN NOU ALGORITM SISTOLIC PENTRU TRANSFORMATA 1-D DST 
FOLOSIND CORELATII CIRCULARE DE TIP PSEUDO 

 
(Rezumat) 

 

Utilizând o nouă secvenţă de restructurare la intrare şi operaţii adecvate de 
permutare a indicilor s-a reformulat transformata 1-D DST într-un astfel de mod încât s-
a obţinut un nou algoritm VLSI eficient. Algoritmul propus utilizează anumite structuri 
computaţionale regulate şi modulare, numite corelaţii circulare, care pot fi calculate în 
paralel, rezultând astfel o implementare VLSI, eficientă, cu o mare productivitate în 
procesarea datelor. Algoritmul propus poate fi mapat pe o arie sistolică liniară având 
performanţe ridicate.  


