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Abstract. The nonlinear differential equation of first order is established, 
satisfied by the function X2(R2), where Z2 = R2 + jX2 is the complex impedance of 
the nonlinear inertial and passive receiver of a linear and non-autonomous in 
restreint sens two-port, in harmonic steady-state, so that the complex transfer 
impedance of the two-port have an extreme value. 

The established differential equation is integrated analytically in two 
particular cases, when this one is of Bernoully type. 

 

Key words: in restreint sense linear and non-autonomous two-ports; 
nonlinear inertial and passive receiver; complex transfer impedance; nonlinear 
differential equation of first order. 

 
 

1. Introduction 
 

It is well known that in the theory of the linear and non-autonomous in 
restreint sens two-ports, having the eqs. 
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– the fundamental parameters matrix, may be defined, anmeng other transfer 
coefficients (Şora, 1964), the transfer complex impedance  
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In what follows a detailed study of this complex impedance is 

performed, when the two-port’s receiver is a nonlinear inertial one. It is a matter 
of a linear non-autonomous (in restreint sense) two-port (LNT), supplied at the 
(1), (1′) gate with a harmonic voltage having a nonlinear inertial and passive 
receiver (NIPR) represented in Fig. 1. The receiver’s complex impedance is  
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Fig. 1 

 
As it is known (Philippow, 1963), if a nonlinear inertial element is 

excited with a harmonic signal, the response signal is harmonic too, so that the 
element’s steady-state is a harmonic one, being possible, in this case, to utilize, 
in an advantageous manner, the symbolic proceeding utilizing complex 
quantities. 

 
2. Utilized Method 

 
The nonlinear inertial character of the complex impedance, Z2 , can be 

render evident considering both this impedance and hers components, R2 and X2, 
as being functions of the amplitude, Im , of an arbitrary harmonic current (Im), as 
was considered in a previous paper (Rosman, 2005). Consequently relation (4) 
may be written  

 

2 2 2( ) ( ) j ( ).m m mZ I R I X I                                        (5) 
 
Simultaneously with complex impedance, Z2 ,the signals on the two-port’s gates 
become also functions of amplitude Im , namely I1(Im), U2(Im), I2(Im), so that the 



Bul. Inst. Polit. Iaşi, t. LIX (LXIII), f. 1, 2013                                        31                                         
 

transfer complex impedance (3) may be written 
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Having in view two-port’s eqs. (1) expression (6) becomes 
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Evidently it is possible to consider, for simplicity, that Im = I2m. 
In what follows the possibility that, in certain conditions, the modulus 

of complex transfer impedance, Z2m , have extreme values, is studied. Similar 
studies concerning tha functions kU(Im) and kI(Im) moduli were performed in 
previous papers (Rosman, 2006, 2012), where kU is the voltage transfer 
coefficient and kI – the current transfer coefficient. 

 
 

3. Differential Equation Satisfied by Function X2(R2) (or R2(X2)) 
 

Beforhand it is necessary to have in view that unlike the case when the 
LNT’s receiver is linear, the complex transfer impedance being a function of 
two independent variables, R2 and X2 , when the LNT’s receiver is non-linear 
inertial, this modulus is a function of a single independent variable, namely Im . 

If notations 
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are introduced and taking into account relation (5), expression (7) becomes 
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The complex transfer impedance’s modulus is 
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Having in view that x and y are functions of Im it results that the derivative of 
expression (10) with respect to Im is  
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Annulling this derivative it results the following differential eq.: 
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Using the notations 
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the differential eq. (12) becomes 
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4. Integration of Differential Equation (14)  

 
Differential eq. (14), of first order, belongs to the type 
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where 
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Accordingly                                    
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so P y Q x      and, consequently, expression (15) not represents an exact 
total differential. It results that isn’t possible to integrate the differential eq. 
(14), in general case, than with numerical methods.  
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4.1. Particular Cases 

 
In the particular cases when either α = 0, or β = 0, the differential eq. 

(14) becomes more simple, here integration being possible using analytical 
proceedings. 

a) Case α =0   *
21 22 0e A A  . This particular situation takes place 

when P20 = 0; representing the LNT through the equivalent scheme in T as in 
Fig. 2, the case α = 0 is realized when the complex impedances 

2
 and 

3
  are 

pure reactive. In this case differential eq. (14) becomes 
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Fig. 2 

 

Performing the dependent variable changing 
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differential eq. (18) becomes 
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The integration of this eq. is simpler when this one is written as 
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belonging to Bernoulli type (Corduneanu, 1981), having the general form 
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the functions m(z), n(z) being continuous in range . 
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In view to integrate differential eq. (21), this one is divided by x and the 
dependent variable changing 

 
2x                                                         (24) 

 

is performed so that eq. (21) becomes 
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that is a linear differential eq. having the form 
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having the solution (Corduneanu, 1981) 
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and C is an integration constant. 

 Differential eq.’s solution (27) can be written as 
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Having in view relations (19) and (24) expression (29) becomes 
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Since x represents a resistance (see rel. (8)) it is necessary that the inequality 
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be satisfied, which may be written as 
 

2
2

22 0
2

y C C 
     
 

 
 

 
.                                   (32) 



Bul. Inst. Polit. Iaşi, t. LIX (LXIII), f. 1, 2013                                        35                                         
 

The trinomial’s roots from the right side of inequality(32) are 
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As regards the integration constant, C, this one must satisfy the 

supplementary inequality 
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where relation (133) was taken into accont. 
It is advantageous to write relation (30) as 
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the  equality  with  zero  representing  the eq. of a circle (Fig. 3) having the 
center  
 

          
Fig. 3                                                    Fig. 4 

 
in (0, / 2 )M C    and the radius 2 2 2 2/ 4C    . Having in view relation 
(13) it results that the circle’s center, M, can be situated both on semi-axis y > 0 
or y < 0. In the same time, taking into account the notations (8) too, circle’s (35) 
eq. may be written as 
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having the center in    * *2
21 22 21 22220, 2M C m A A A m A A      and the radius 
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respectively 
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Since x and y have the significances of a resistance, respectively of a 

reactance, it is evidently that only the half circle situated in the semi-plane x > 0 
has a physical meaning. This half of circle may be considered as representing 
the geometric-locus diagram of the complex impedance Z2(Im) corresponding to 
the extreme values of complex transfer impedance, Zm , when the LNT’s 
fundamental parameters satisfy relation  *

21 22 0.e A A   

b) Case β = 0   *
21 22 0 .m A A   This  situation is realized when Q20 = 

= 0. Considering the LNT’s equivalent scheme in T represented in Fig. 2, this 
case corresponds to the situation when complex impedance 2 and 3 have equal 
and of opposite sign reactances     2 3

.m m     In this particular case 

the differential eq. (14) becomes 
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similar to the differential eq. (18). Consequently, using an analogous proceeding 
as in the previous particular case, is possible to integrate differential eq. (39) 
obtaining 
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where C′ is an integration constant. Because y represents a reactance (see rel. 
(8)) it must be a real quantity so that the inequality 
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must be fulfilled, which is equivalent with the inequality 
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The roots of the trinomial from the left side of inequality (42) are  
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The integration constant, C′, satisfies the inequality 
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where notations (13) were taken into account. 
Relation (40) can be written, more advantageously, as 
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which represents the eq. of a circle (Fig. 4) having the center in 
'( / 2 ',0)M C    and the radius 2 2 2 2' / 4C    . Having in view inequalities 

(43) it results that the circle’s center, M′, is situated constantly on the axis x < 0. 
In this case too, having in view that x and y have the significances of a 

resistance, respectively of a reactance, only the circle’s arc situated in the half-
plane x ≥ 0 have a physical meaning. This circle’s arc constitutes, properly, the 
complex impedance’s Z2(Im) geometric-locus diagram wich corresponds to the 
extreme values of transfer complex impedance’s modulus, Zm , when the LNT’s 
fundamental parameters satisfy relation  *

21 22 0.m A A   

Having in view the relations (8) and (13) significations eq. (45) may be 
written as 
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having the center in    * *2
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respectively 
 

 
2
22

2*
21 22

' 0.
2

AC
e A A

 
  

                                  (38) 

 
5. Conclusions 

 
1. The differential equation satisfied by function X2(R2) is established, 

where Z2 = R2 + jX2 is the nonlinear, inertial receiver’s complex impedance of a 
linear and non-autonomous two-port (in a restreint sense), in harmonic steady-
state, so that the two-port’s transfer complex impedance’s modulus have 
extreme values 

2. The established differential equation, which is nonlinear of first 
order, is integrated analytically in two particular cases. In each case the equation 
X2(R2) represents a circle which is, in the half-plane R2 ≥ 0, the geometric-locus 
diagram of the receiver’s complex impedance, Z2 , corresponding to the extreme 
values of the two-port’s transfer complex impedance, Zm , for different values of 
the secondary current amplitude (and, implicitely, of the primary voltage 
amplitude). 
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IMPEDANŢA DE TRANSFER A UNUI CUADRIPOL LINIAR CU 
RECEPTOR NELINIAR 

 
(Rezumat) 

 

Se stabileşte ecuaţia diferenţială, neliniară, de primul ordin, satisfăcută de 
funcţia X2(R2), unde Z2 = R2 + jX2 este impedanţa complexă a receptorului neliniar, 
inerţial şi pasiv, a unui cuadripol (în sens restrâns) liniar şi neautonom, în regim 
permanent armonic, astfel încât modulul impedanţei de transfer a cuadripolului să aibă o 
valoare extremă. 

Ecuaţia diferenţială stabilită se integrează în două cazuri particulare, în care 
aceasta este de tip Bernoulli, permiţând obţinerea unei soluţii analitice.  



 


