BULETINUL INSTITUTULUI POLITEHNIC DIN IAȘI Publicat de Universitatea Tehnică "Gheorghe Asachi" din Iași Tomul LIX (LXIII), Fasc. 1, 2013 Secția ELECTROTEHNICĂ. ENERGETICĂ. ELECTRONICĂ

# THE COMPLEX TRANSFER IMPEDANCE OF A LINEAR TWO-PORT WITH NON-LINEAR RECEIVER

BY

# HUGO ROSMAN<sup>\*</sup>

"Gheorghe Asachi" Technical University of Iaşi, Faculty of Electrical Engineering

Received, February 2, 2013 Accepted for publication: March 28, 2013

**Abstract.** The nonlinear differential equation of first order is established, satisfied by the function  $X_2(R_2)$ , where  $\underline{Z}_2 = R_2 + jX_2$  is the complex impedance of the nonlinear inertial and passive receiver of a linear and non-autonomous in restreint sens two-port, in harmonic steady-state, so that the complex transfer impedance of the two-port have an extreme value.

The established differential equation is integrated analytically in two particular cases, when this one is of Bernoully type.

**Key words:** in restreint sense linear and non-autonomous two-ports; nonlinear inertial and passive receiver; complex transfer impedance; nonlinear differential equation of first order.

# **1. Introduction**

It is well known that in the theory of the linear and non-autonomous in restreint sens two-ports, having the eqs.

$$\begin{bmatrix} \underline{U}_1 \\ \underline{I}_1 \end{bmatrix} = \begin{bmatrix} \underline{A} \end{bmatrix} \begin{bmatrix} \underline{U}_2 \\ \underline{I}_2 \end{bmatrix}, \tag{1}$$

with

<sup>\*</sup> *e-mail*: adi\_rotaru2005@yahoo.com

$$\begin{bmatrix} \underline{A} \end{bmatrix} = \begin{bmatrix} \underline{A}_{11} & \underline{A}_{12} \\ \underline{A}_{21} & \underline{A}_{22} \end{bmatrix}$$
(2)

- the fundamental parameters matrix, may be defined, anmeng other transfer coefficients (Sora, 1964), the *transfer complex impedance* 

$$\underline{Z}_m = \frac{\underline{U}_2}{\underline{I}_1} = R_m + jX_m.$$
(3)

In what follows a detailed study of this complex impedance is performed, when the two-port's receiver is a nonlinear inertial one. It is a matter of a linear non-autonomous (in restreint sense) two-port (LNT), supplied at the (1), (1') gate with a harmonic voltage having a nonlinear inertial and passive receiver (NIPR) represented in Fig. 1. The receiver's complex impedance is

As it is known (Philippow, 1963), if a nonlinear inertial element is excited with a harmonic signal, the response signal is harmonic too, so that the element's steady-state is a harmonic one, being possible, in this case, to utilize, in an advantageous manner, the symbolic proceeding utilizing complex quantities.

# 2. Utilized Method

The nonlinear inertial character of the complex impedance,  $\underline{Z}_2$ , can be render evident considering both this impedance and hers components,  $R_2$  and  $X_2$ , as being functions of the amplitude,  $I_m$ , of an arbitrary harmonic current ( $I_m$ ), as was considered in a previous paper (Rosman, 2005). Consequently relation (4) may be written

$$\underline{Z}_{2}(I_{m}) = R_{2}(I_{m}) + jX_{2}(I_{m}).$$
(5)

Simultaneously with complex impedance,  $\underline{Z}_2$ , the signals on the two-port's gates become also functions of amplitude  $I_m$ , namely  $\underline{I}_1(I_m)$ ,  $\underline{U}_2(I_m)$ ,  $\underline{I}_2(I_m)$ , so that the

transfer complex impedance (3) may be written

$$\underline{Z}_m(I_m) = \frac{\underline{U}_2(I_m)}{\underline{I}_1(I_m)} = R_m(I_m) + jX_m(I_m).$$
(6)

Having in view two-port's eqs. (1) expression (6) becomes

$$\underline{Z}_m(I_m) = \frac{\underline{Z}_2(I_m)}{\underline{A}_{21}\underline{Z}_2(I_m) + \underline{A}_{22}}.$$
(7)

Evidently it is possible to consider, for simplicity, that  $I_m = I_{2m}$ .

In what follows the possibility that, in certain conditions, the modulus of complex transfer impedance,  $Z_{2m}$ , have extreme values, is studied. Similar studies concerning tha functions  $\underline{k}_U(I_m)$  and  $\underline{k}_I(I_m)$  moduli were performed in previous papers (Rosman, 2006, 2012), where  $\underline{k}_U$  is the voltage transfer coefficient and  $\underline{k}_I$  – the current transfer coefficient.

# **3.** Differential Equation Satisfied by Function $X_2(R_2)$ (or $R_2(X_2)$ )

Beforhand it is necessary to have in view that unlike the case when the LNT's receiver is linear, the complex transfer impedance being a function of two independent variables,  $R_2$  and  $X_2$ , when the LNT's receiver is non-linear inertial, this modulus is a function of a single independent variable, namely  $I_m$ . If notations

$$x = R_2(I_m), \quad y = X_2(I_m)$$
 (8)

are introduced and taking into account relation (5), expression (7) becomes

$$\underline{Z}_m(I_m) = \frac{x(I_m) + jy(I_m)}{\underline{A}_{21}[x(I_m) + jy(I_m)] + \underline{A}_{12}}.$$
(9)

The complex transfer impedance's modulus is

$$Z_m(I_m) = \sqrt{\frac{x^2 + y^2}{A_{21}^2 \left(x^2 + y^2\right) + 2\Re e\left(\underline{A}_{21}\underline{A}_{22}^*\right)x - 2\Im m\left(\underline{A}_{21}\underline{A}_{22}^*\right)y + A_{22}^2}}.$$
 (10)

Having in view that x and y are functions of  $I_m$  it results that the derivative of expression (10) with respect to  $I_m$  is

$$\frac{\mathrm{d}Z_{m}}{\mathrm{d}I_{m}} = \left(x^{2} + y^{2}\right)^{-1/2} \left[A_{21}^{2}\left(x^{2} + y^{2}\right) + 2\Re e\left(\underline{A}_{21}\underline{A}_{22}^{*}\right)x - 2\Im m\left(\underline{A}_{21}\underline{A}_{22}^{*}\right)y + A_{22}^{2}\right]^{-3/2} \times \\ \times \left\{ \left[2\Re e\left(\underline{A}_{21}\underline{A}_{22}^{*}\right)\left(x^{2} - y^{2}\right) - 2\Im m\left(\underline{A}_{21}\underline{A}_{22}^{*}\right)xy + A_{22}^{2}x\right]\frac{\mathrm{d}x}{\mathrm{d}I_{m}} + \\ + \left[2\Im m\left(\underline{A}_{21}\underline{A}_{22}^{*}\right)\left(x^{2} - y^{2}\right) + 2\Re e\left(\underline{A}_{21}\underline{A}_{22}^{*}\right)xy + A_{22}^{2}y\right]\frac{\mathrm{d}y}{\mathrm{d}I_{m}} \right\}.$$
(11)

Annulling this derivative it results the following differential eq.:

$$\frac{dy}{dx} + \frac{\Re e(\underline{A}_{21}\underline{A}_{22}^{*})(x^{2} + y^{2}) - 2\Im m(\underline{A}_{21}\underline{A}_{22}^{*})xy + A_{22}^{2}x}{\Im m(\underline{A}_{21}\underline{A}_{22}^{*})(x^{2} - y^{2}) + 2\Re e(\underline{A}_{21}\underline{A}_{22}^{*})xy + A_{22}^{2}y} = 0.$$
(12)

Using the notations

$$\Re e\left(\underline{A}_{21}\underline{A}_{22}^{*}\right) = \alpha, \ \Im m\left(\underline{A}_{21}\underline{A}_{22}^{*}\right) = \beta, \ A_{22}^{2} = \gamma$$
(13)

the differential eq. (12) becomes

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{\alpha \left(x^2 + y^2\right) - 2\beta xy + \gamma x}{\beta \left(x^2 - y^2\right) + 2\alpha xy + \gamma y} = 0.$$
(14)

# 4. Integration of Differential Equation (14)

Differential eq. (14), of first order, belongs to the type

$$P(x, y)dx + Q(x, y)dy = 0,$$
 (15)

where

$$P(x,y) = \alpha \left(x^2 + y^2\right) - 2\beta xy + \gamma x, \ Q(x,y) = \beta \left(x^2 - y^2\right) + 2\alpha xy + \gamma y.$$
(16)

Accordingly

$$\frac{\partial P}{\partial y} = -2(\beta x + \alpha y), \quad \frac{\partial Q}{\partial x} = 2(\beta x + \alpha y), \tag{17}$$

so  $\partial P/\partial y \neq \partial Q/\partial x$  and, consequently, expression (15) not represents an exact total differential. It results that isn't possible to integrate the differential eq. (14), in general case, than with numerical methods.

#### 4.1. Particular Cases

In the particular cases when either  $\alpha = 0$ , or  $\beta = 0$ , the differential eq. (14) becomes more simple, here integration being possible using analytical proceedings.

a) *Case*  $\alpha = 0$   $\left(\Re e\left(\underline{A}_{21}\underline{A}_{22}^*\right) = 0\right)$ . This particular situation takes place when  $P_{20} = 0$ ; representing the LNT through the equivalent scheme in T as in Fig. 2, the case  $\alpha = 0$  is realized when the complex impedances  $\underline{\zeta}_2$  and  $\underline{\zeta}_3$  are pure reactive. In this case differential eq. (14) becomes



Performing the dependent variable changing

$$2\beta y - \gamma = z \tag{19}$$

differential eq. (18) becomes

$$\frac{dz}{dx} = \frac{8\beta^2 xz}{4\beta^2 x^2 - z^2 + \gamma^2}.$$
(20)

The integration of this eq. is simpler when this one is written as

$$\frac{\mathrm{d}x}{\mathrm{d}z} = \frac{4\beta^2 x^2 - z^2 + \gamma^2}{8\beta^2 xz} = \frac{1}{2} \cdot \frac{x}{z} - \frac{z^2 - \gamma^2}{8\beta^2 xz},$$
(21)

belonging to Bernoulli type (Corduneanu, 1981), having the general form

$$\frac{\mathrm{d}x}{\mathrm{d}z} = m(z)x + n(z)x^p, \ x \in \mathfrak{I}, \tag{22}$$

with

$$m(z) = \frac{1}{2z}, \ n(z) = \frac{z^2 - \gamma^2}{8b^2 z}, \ p = -1,$$
(23)

the functions m(z), n(z) being continuous in range  $\Im$ .

In view to integrate differential eq. (21), this one is divided by x and the dependent variable changing

$$x^2 = \lambda \tag{24}$$

is performed so that eq. (21) becomes

$$\frac{\mathrm{d}\lambda}{\mathrm{d}z} = \frac{\lambda}{z} - \frac{z^2 - \gamma^2}{4\beta^2 z},\tag{25}$$

that is a linear differential eq. having the form

$$\frac{\mathrm{d}\lambda}{\mathrm{d}z} + M(z)\lambda + N(z) = 0 \tag{26}$$

having the solution (Corduneanu, 1981)

$$\lambda(z) = e^{-\int M(z)dz} \left[ C - \int N(z)e^{\int M(z)dz} dz \right],$$
(27)

where

$$M(z) = \frac{\lambda}{z}, \quad N(z) = \frac{z^2 - \gamma^2}{4\beta^2 z}$$
(28)

and C is an integration constant.

Differential eq.'s solution (27) can be written as

$$\lambda(z) = Cz - \frac{1}{4\beta^2} \left( z^2 + \gamma^2 \right). \tag{29}$$

Having in view relations (19) and (24) expression (29) becomes

$$x = \sqrt{C(2\beta y - \gamma) - \frac{1}{4\beta^2} \left[ \left( 2\beta y - \gamma \right)^2 + \gamma^2 \right]}.$$
(30)

Since x represents a resistance (see rel. (8)) it is necessary that the inequality

$$C(2\beta y - \gamma) - \frac{1}{4\beta^2} \left[ (2\beta y - \gamma)^2 + \gamma^2 \right] \ge 0$$
(31)

be satisfied, which may be written as

$$y^{2} - \left(2\beta C + \frac{\gamma}{\beta}\right) - \gamma C + \frac{\gamma^{2}}{2\beta^{2}} \le 0.$$
(32)

The trinomial's roots from the right side of inequality(32) are

$$y', y'' = \beta C + \frac{\gamma}{2\beta} \pm \frac{1}{2} \sqrt{2\beta^2 C^2 - \frac{\gamma^2}{\beta^2}}.$$
 (33)

As regards the integration constant, C, this one must satisfy the supplementary inequality

$$C \ge \frac{\gamma}{2\beta^2} > 0, \tag{34}$$

where relation  $(13_3)$  was taken into accont.

It is advantageous to write relation (30) as

$$x^{2} + y^{2} - \left(2\beta C + \frac{\gamma}{\beta}\right)y + \frac{\gamma^{2}}{2\beta^{2}} + C\gamma \ge 0,$$
(35)

the equality with zero representing the eq. of a circle (Fig. 3) having the center



in  $M(0,\beta C + \gamma/2\beta)$  and the radius  $\sqrt{\beta^2 C^2 + \gamma^2/4\beta^2}$ . Having in view relation (13) it results that the circle's center, *M*, can be situated both on semi-axis y > 0 or y < 0. In the same time, taking into account the notations (8) too, circle's (35) eq. may be written as

$$R_{2}^{2}(I_{m}) + X_{2}^{2}(I_{m}) - \left[2C\Im(\underline{A}_{21}\underline{A}_{22}^{*}) + \frac{A_{22}^{2}}{\Im(\underline{A}_{21}\underline{A}_{22}^{*})}\right]X_{2}(I_{m}) + \frac{A_{22}^{4}}{2\left[\Im(\underline{A}_{21}\underline{A}_{22}^{*})\right]^{2}} + CA_{22}^{2} = 0,$$
(36)

having the center in  $M\left[0, C\Im m\left(\underline{A}_{21}\underline{A}_{22}^*\right) - A_{22}^2/2\Im m\left(\underline{A}_{21}\underline{A}_{22}^*\right)\right]$  and the radius  $\sqrt{C^2\left[\Im m\left(\underline{A}_{21}\underline{A}_{22}^*\right)\right]^2 - A_{22}^2/4\left[\Im m\left(\underline{A}_{21}\underline{A}_{22}^*\right)\right]^2}$ . At the same time relations (33) and (34) become

$$y_{2}, y_{2}^{*} = C\Im m(\underline{A}_{21}\underline{A}_{22}^{*}) + \frac{A_{22}^{2}}{2\Im m(\underline{A}_{21}\underline{A}_{22}^{*})} \pm \sqrt{4C^{2}[\Im m(\underline{A}_{21}\underline{A}_{22}^{*})]^{2} - A_{22}^{4}/[\Im m(\underline{A}_{21}\underline{A}_{22}^{*})]^{2}},$$
(37)

respectively

$$C \ge \frac{A_{22}^2}{2\left[\Im m\left(\underline{A}_{21}\underline{A}_{22}^*\right)\right]^2} > 0.$$
(38)

Since *x* and *y* have the significances of a resistance, respectively of a reactance, it is evidently that only the half circle situated in the semi-plane x > 0 has a physical meaning. This half of circle may be considered as representing the geometric-locus diagram of the complex impedance  $\underline{Z}_2(I_m)$  corresponding to the extreme values of complex transfer impedance,  $\underline{Z}_m$ , when the LNT's fundamental parameters satisfy relation  $\Re e(\underline{A}_{21}\underline{A}_{22}^*) = 0$ .

b) Case  $\beta = 0 \left( \Im m \left( \underline{A}_{21} \underline{A}_{22}^* \right) = 0 \right)$ . This situation is realized when  $Q_{20} =$ 

= 0. Considering the LNT's equivalent scheme in T represented in Fig. 2, this case corresponds to the situation when complex impedance  $\underline{\zeta}_2$  and  $\underline{\zeta}_3$  have equal and of opposite sign reactances  $(\Im m(\underline{\zeta}_2) = -\Im m(\underline{\zeta}_3))$ . In this particular case the differential eq. (14) becomes

$$\frac{\mathrm{d}x}{\mathrm{d}y} + \frac{y(2\alpha x + \gamma)}{\alpha \left(x^2 - y^2\right) + \gamma x} = 0, \tag{39}$$

similar to the differential eq. (18). Consequently, using an analogous proceeding as in the previous particular case, is possible to integrate differential eq. (39) obtaining

$$y = \sqrt{C'(2\alpha x + \gamma) - \frac{1}{4\alpha^2} \left[ \left( 2\alpha x + \gamma \right)^2 + \gamma^2 \right]},$$
(40)

where C' is an integration constant. Because y represents a reactance (see rel. (8)) it must be a real quantity so that the inequality

$$C'(2\alpha x + \gamma) - \frac{1}{4\alpha^2} \Big[ (2\alpha x + \gamma)^2 + \gamma^2 \Big] \ge 0$$
(41)

must be fulfilled, which is equivalent with the inequality

$$x^{2} - \left(2\alpha C' - \frac{\gamma}{\alpha}\right)x - \gamma C' + \frac{\gamma^{2}}{2\alpha^{2}} \le 0.$$
(42)

The roots of the trinomial from the left side of inequality (42) are

$$x', x'' = \alpha C' - \frac{\gamma}{2\alpha} \pm \frac{1}{2} \sqrt{2\alpha^2 C'^2 - \frac{\gamma^2}{\alpha^2}}.$$
(43)

The integration constant, C', satisfies the inequality

$$C' \ge \frac{\gamma}{2\alpha^2} > 0, \tag{44}$$

where notations (13) were taken into account.

Relation (40) can be written, more advantageously, as

$$x^{2} + y^{2} - \left(\frac{\gamma}{\alpha} - 2\alpha C'\right)x + \frac{\gamma^{2}}{2\alpha^{2}} - \gamma C' = 0,$$
(45)

which represents the eq. of a circle (Fig. 4) having the center in  $M'(\gamma/2\alpha - \alpha C', 0)$  and the radius  $\sqrt{\alpha^2 C'^2 - \gamma^2/4\alpha^2}$ . Having in view inequalities (43) it results that the circle's center, M', is situated constantly on the axis x < 0.

In this case too, having in view that x and y have the significances of a resistance, respectively of a reactance, only the circle's arc situated in the halfplane  $x \ge 0$  have a physical meaning. This circle's arc constitutes, properly, the complex impedance's  $\underline{Z}_2(I_m)$  geometric-locus diagram wich corresponds to the extreme values of transfer complex impedance's modulus,  $Z_m$ , when the LNT's fundamental parameters satisfy relation  $\Im m(\underline{A}_{21}\underline{A}_{22}^*) = 0$ .

Having in view the relations (8) and (13) significations eq. (45) may be written as

$$R_{2}^{2}(I_{m}) + X_{2}^{2}(I_{m}) - \left[\frac{A_{22}^{2}}{\Re e(\underline{A}_{21}\underline{A}_{22}^{*})} - 2C'\Re e(\underline{A}_{21}\underline{A}_{22}^{*})\right]R_{2}(I_{m}) + \frac{A_{22}^{4}}{2\left[\Re e(\underline{A}_{21}\underline{A}_{22}^{*})\right]^{2}} - C'A_{22}^{2} = 0,$$
(46)

having the center in  $M' \Big[ A_{22}^2 / 2\Re e \Big( \underline{A}_{21} \underline{A}_{22}^* \Big) - C' \Re e \Big( \underline{A}_{21} \underline{A}_{22}^* \Big), 0 \Big]$  and the radius  $\sqrt{C'^2 \Big[ \Im m \Big( \underline{A}_{21} \underline{A}_{22}^* \Big) \Big]^2 - A_{22}^4 / \Big[ \Im m \Big( \underline{A}_{21} \underline{A}_{22}^* \Big) \Big]^2}$ . In the same time relations (43) and (44) become

$$R_{2}'(I_{m}), R_{2}''(I_{m}) = C' \Re e\left(\underline{A}_{21} \underline{A}_{22}^{*}\right) - \frac{A_{22}^{2}}{2\Re e\left(\underline{A}_{21} \underline{A}_{22}^{*}\right)} \pm \frac{1}{2} \sqrt{4C'^{2} \left[\Re e\left(\underline{A}_{21} \underline{A}_{22}^{*}\right)\right]^{2} - A_{22}^{4} / \left[\Re e\left(\underline{A}_{21} \underline{A}_{22}^{*}\right)\right]^{2}},$$
(47)

respectively

$$C' \ge \frac{A_{22}^2}{2\left[\Re e\left(\underline{A}_{21}\underline{A}_{22}^*\right)\right]^2} > 0.$$
(38)

# 5. Conclusions

1. The differential equation satisfied by function  $X_2(R_2)$  is established, where  $\underline{Z}_2 = R_2 + jX_2$  is the nonlinear, inertial receiver's complex impedance of a linear and non-autonomous two-port (in a restreint sense), in harmonic steadystate, so that the two-port's transfer complex impedance's modulus have extreme values

2. The established differential equation, which is nonlinear of first order, is integrated analytically in two particular cases. In each case the equation  $X_2(R_2)$  represents a circle which is, in the half-plane  $R_2 \ge 0$ , the geometric-locus diagram of the receiver's complex impedance,  $\underline{Z}_2$ , corresponding to the extreme values of the two-port's transfer complex impedance,  $\underline{Z}_m$ , for different values of the secondary current amplitude (and, implicitely, of the primary voltage amplitude).

# REFERENCES

Corduneanu A., *Ecuații diferențiale cu aplicații în electrotehnică*. Edit. Facla, Timișoara, 1981.

Philippow E., Nichtlineare Elektrotechnik. Akad. Ges. Geest u. Portig, Leipzig, 1963.

- Rosman H., *Transferul puterii active prin cuadripoli liniari, pasivi, care alimentează, în regim permanent armonic, receptoare neliniare inerțiale.* Bul. Șt. Univ. Politehnica, Timișoara, s. Energ., **50(64)**, *1-2*, 499-506 (2005).
- Rosma H., *Voltage Transfer Coefficient of a Linear Two-Port with Nonlinear Receiver*. Rev. Roum. Sci. Techn., s. Électrot. et Énerg., **51**, *2*, 159-168 (2006).

# Rosman H., Current Transfer Coefficient of a Linear Two-Port with Nonlinear Receiver. Bul. Inst. Politehnic, Iași, LVIII (LXII), 4, s. Electrot., Energ., Electron., 29-34 (2012).

Sora C., Cuadripolul electric. Edit. Tehnică, Bucurețti, 1964.

# IMPEDANȚA DE TRANSFER A UNUI CUADRIPOL LINIAR CU RECEPTOR NELINIAR

#### (Rezumat)

Se stabilește ecuația diferențială, neliniară, de primul ordin, satisfăcută de funcția  $X_2(R_2)$ , unde  $Z_2 = R_2 + jX_2$  este impedanța complexă a receptorului neliniar, inerțial și pasiv, a unui cuadripol (în sens restrâns) liniar și neautonom, în regim permanent armonic, astfel încât modulul impedanței de transfer a cuadripolului să aibă o valoare extremă.

Ecuația diferențială stabilită se integrează în două cazuri particulare, în care aceasta este de tip Bernoulli, permițând obținerea unei soluții analitice.