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Abstract. The aim of this paper is to highlight the characteristics of 
sensorimotor rhythms (mu and beta) produced by right and left hand motor 
imagery. The electroencephalographic (EEG) data were recorded with 8 g.tec 
active electrodes by means of g.MOBIlab+ modulus. The EEG data are wavelet 
multiresolution decomposed into sub-bands of interest (7.5…15 Hz–mu 
rhythm,15…30 Hz–beta rhythm). We applied the Higuchi method for estimating 
Hurst exponent of this decomposed signals, with different types of wavelet, on 
C3 and C4 channels. The Higuchi method, for estimating the Hurst exponent, 
helps us to highlight, mathematically, the presence of the sensorimotor rhythms 
in the recorded signals. 
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1. Introduction 

 
An electroencephalogram (EEG) signal is generated by the electrical 

activity of the billion nerve cells in human brain. The EEG signals are very 
helpful information for a unique interfacing technology between a human being 
and a machine, such as a brain–computer interface (BCI) (Mason et al., 2003). 
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The EEG signals are measured at the scalp through electrodes (the noninvasive 
method). The BCI system was implemented not only for healthy people, but 
also for patients who are suffering from severe motor deficiencies and 
numerous other diseases, and they cannot use any of the traditional methods to 
communicate, but they are cognitively intact (Wolpaw et al., 2002). The 
imagination of motor movement for real applications’ system can be realized by 
training the users (or subjects) to control his/her brainwaves. There are many 
researches who have proposed the EEG signals of motor imagery tasks for 
useful applications such as a robot control (Millan et al., 2004), a virtual 
keyboard (Obermaier et al., 2003), virtual applications or games, etc. However, 
most of the previous works, based on a binary command, since the imagination 
of left and right hand movement are mostly popular tasks. 

The interpretation of biological systems as chaotic (or nonlinear 
dynamical systems) is recently of great interest in medicine and computational 
sciences. Thus, signals recorded from humans or animals can be characterized, 
general speaking, as having a noisy, nonstationary and nonlinear structure. If a 
variable, as a function of time, undergoes changes of characteristics that are 
similar, irrespective of the time interval over which the observations are made, 
the underlying process is defined as a fractal (Mandelbrot, 1982). In order to 
describe fractal systems, many definitions have been developed, e.g. Higuchi’s 
fractal dimension (1988), the largest Lyapunov exponent (LLD), the Hurst 
exponent and the correlation dimension (CD) (Mandelbrot, 1982). The fractal 
dimension represents one possible parameter to characterize chaotic systems. 
The fractal dimension has been widely used as estimation of scale independent 
complexity or irregularity of a biological system over space or time 
(Phothisonothai et al., 2007; Boostani et al., 2004; Georgiev et al., 2009). 

Brain information is achieved by neural activity patterns that occur in 
electrical potentials known as action potentials on the cellular scale and in EEG 
waves on the macroscopic scale. Brain activity is typically aperiodic and 
unpredictable in the absence of stimulation. However, no one can bring 
mathematically stringent proof that brain activity is truly chaotic.  

The event-related desynchronization (ERD) and synchronization (ERS) 
or ERD/ERS patterns are widely used to reveal the natural phenomena 
responses in EEG signal of imaging. Several methods have been proposed to 
detect the ERD/ERS. One of them is the method based on wavelet 
decomposition. This technique has always been a popular method for 
frequency-based extracting EEG signals. The C3 and C4 electrode signals were 
utilized for extracting the Hurst coefficients using Higuchi`s method. 

 
2. Methods 

 
2.1. Multiresolution Wavelet Analysis 

 
Multiresolution wavelet transform allows the analysis of non-stationary 

signals. Wavelet transform can analyse these signals at different resolutions by 
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decomposing them into frequency bands. This method was developed to solve 
the deficiencies of Short Time Fourier Transform (STFT). In the case of 
continuous wavelet transform, the signals are analysed by scaling and 
translating a mother wavelet function (Lazăr, 2001).Discrete wavelet transform 
(DWT) is the time-scale representation method based on digital filtering. DWT 
analyses the signal at different resolutions (multi-resolution wavelet analysis), 
by decomposing the signal into different frequency bands. In wavelet analysis it 
is spoken about approximations and details. Approximations are components of 
high scale and low frequency. Details are components of low scale and high 
frequency.  

DWT is calculated by successive low-pass high-pass filtering and 
subsampling, a method known as Mallat algorithm (Mallat, 1999). 

Impulse response of high-pass filter (HPF) is denoted by h(n), and the 
low-pass filter (LPF) by g(n). At each level HPF produces a signal, d(n), of 
detail, while the LPF, associated with scaling function, produces a signal, a(n), 
which is a rough approximation. After HPF and LPF filtering and subsampling 
by 2, we obtain the following signals: 
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2.2. Hurst Estimation with Higuchi’s Method 

 
The Hurst exponent occurs in several areas of applied mathematics, 

including fractals and chaos theory, long memory processes and spectral 
analysis. 

The Hurst exponent is also directly related to the “fractal dimension”, 
which gives a measure of the roughness of a surface. The relationship between 
the fractal dimension, D, and the Hurst exponent, H, is (Beran, 1994) 

  
2 .D H                                               (3) 

 
The fractal dimension provides an indication of how rough a surface is. 

As eq. (3) shows, the fractal dimension is directly related to the Hurst exponent 
for a statistically self-similar data set. A small Hurst exponent has a higher 
fractal dimension and a rougher surface. A larger Hurst exponent has a lower 
fractal dimension and a smoother surface. In our case, a large value for Hurst 
exponent means desynchronization. 

A fractal dimension is a statistical measure indicating the complexity of 
an object or a quantity that is self-similar over some region of space or time 
interval. It has been successfully used in various domains to characterize such 
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objects and quantities, but its usage in motor imagery-based BCI has been more 
recent (Phothisonothai et al., 2008). There are several fractal dimension 
estimation methods, some of which are not applicable to all types of data 
exhibiting fractal properties. 

Higuchi’s method (Higuchi, 1988) computes the fractal dimension of a 
sample. It consists of forming new waveform by iteratively selecting samples 
differing in their starting point, m, and their delay factor, k. We first select a 
maximum delay factor, say kmax. So for every delay factor, k, where k is varied 
from 1 to kmax, we form k new time series, k

mx , where the starting point of the 
series is defined by m and samples at every k samples are selected to form the 
new waveform 
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where m, the starting point for each waveform, is varied from 1 to k, k being the 
delay factor between the sample and N – the window size. Then the length of 
each waveform is calculated as the sum of the distances between two 
consecutive points   
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where [( ) / )] / ( 1)N m k k N   is the normalization factor and N – the window 
length. The lengths for the same delay factor, k, are then averaged as follows: 
 

1
( ) ( , )

k

m
L k L m k



  ,                                         (6) 

 
where k is varied from 1 to kmax and L(k) is the averaged length for a particular 
delay factor, k. We would expect that for every smooth and regular waveform, 
as the delay factor is increased, the length of the waveform would decrease 
proportionally since increasing the delay factor between samples could be 
viewed as smoothening the waveform, and hence we would expect the length to 
decrease proportionally. 
 

3. Basic Results 

The EEG data was recorded by means of a g.tec Company acquisition 
system, namely g.MOBIlab+ module, and BCI2000 platform. We recorded data 
from five cerebral healthy subjects. 
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The patients received instructions regarding their behavior during 
recording. The subjects were seated in front of a monitor that displays, 
successively, left and right arrows. The subjects must carefully look at the 
arrows and try to imagine the movement of the hand indicated by the arrow. 
Each left and right arrow appears 30 times. Channels chosen for electrode 
placement are: CP3, CP4, P3, C3, Pz, C4, P4 and Cz. These channels are 
selected in the left and right hemisphere, due to the appearance of mu and beta 
rhythms in these areas and the reference electrode is placed on the right ear. 

Firstly, we extracted the signals corresponding to left and right hand 
imagery, respectively, and then mediated them for the 30 trials. 

The multiresolution wavelet analysis was performed by means of the 
Biorthogonal3.5, Daubechies2, Daubechies4 and Coiflet4 types, some suited 
mother’s wavelet for sensorimotor rhythms. As the best results are reported 
using the EEG records from C3 (right hand motor imagery) and C4 (left hand 
motor imagery) channels, we applied our software only for these ones. 

Taking into account that the frequency components of the EEG signal 
are situated in the 0…120 Hz range, while the spectrum of the mu rhythm lies 
around 8…12 Hz and beta rhythm around 12…30 Hz, a fourth level 
decomposition of the signal was necessary. 

The time series representation of multiresolution wavelet decomposition 
is not relevant in this case because sensorimotor rhythms are not observed by 
visual analysis of signals, therefore we plotted the frequency response of the 
decomposed signal corresponding to the frequency bands of mu and beta 
rhythms. 

Fig. 1 presents the frequency responses of the signal recorded during 
left hand movement imagining versus rest at the 0…30 Hz frequency band that 
fits both mu and beta rhythms. This plot will not provide relevant results. We 
cannot distinguish relevant spikes in 8…12 Hz and 12…30 Hz bands 
corresponding to mu and beta rhythms, so we will apply the Higuchi method for 
estimating Hurst exponent  and  highlight, mathematically, the presence of these 
rhythms in the recorded signals. 

The calculation of the Hurst exponent is realized for the decomposed 
signals with different types of wavelet on C3 and C4 channels. The signals used 
are: detailed coefficient of fourth level with 7.5…15 Hz frequency band 
(corresponding mu rhythm), detail coefficient of third level decomposition with 
15…30 Hz frequency band (corresponding beta rhythm) and detail coefficient 
of second level, 30…60 Hz. 

In Tables 1…4 we calculated the average values of Hurst exponents for 
five subjects. In Table 1 the signals were decomposed using the 
Biorthogonal3.5 wavelet. Channels C3 and C4 are the most suitable for 
emphasizing sensorimotor rhythms. Note that, on C3 channel, the average 
signal corresponding to right hand motor imagery has higher values than the 
rest signal or left hand motor imagery signal. The highest value is at the range 
of 7.5…15 Hz frequency; therefore mu sensorimotor rhythm is predominant. 
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Better values for left hand motor imagery signal are obtained on C4 
channel at 15…30 Hz frequency band, in this case mainly the beta rhythm. 

 

 
Fig. 1 – Frequency response of approximation coefficient at level 2 for left hand 

motor imagery signal vs. rest signal. 
 
 

Table 1 
 The Average of Hurst Exponent (Multiresolution Wavelet Decomposition with 

Biorthogonal3.5) 
Biorthogonal3.5 7.5…15 Hz 15…30 Hz 30…60 Hz 

C3    
Right 0.8252 0.4817 0.5055 
Left 0.7550 0.2739 0.4313 
Rest 0.7278 0.4745 0.4948 
C4    
Right  0.6523 0.4574 0.5902 
Left 0.6469 0.5699 0.4312 
Rest 0.5772 0.3121 0.4161 

 
 

Table 2 contains the signals decomposed using Daubechies2 mother 
wavelet. In this table, the difference between values is very obvious, and we 
have a maximum of 0.8015 for right hand motor imagery signal on C3 channel 
at 15…30 Hz, and 0.7024 for the left hand motor imagery signal on C4 channel 
at the same frequency of 15…30 Hz. The results are considered very good. 
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Table 2  

 The Average of Hurst Exponent (Multiresolution Wavelet Decomposition with 
Daubechies2) 

Daubechies2 7.5…15 Hz 15…30 Hz 30…60 Hz 
C3    
Right 0.4439 0.8105 0.4952 
Left 0.2256 0.6143 0.4478 
Rest 0.1269 0.3646 0.4210 
C4    
Right  0.4542 0.6824 0.2215 
Left 0.3976 0.7024 0.4425 
Rest 0.4641 0.5389 0.4809 

 
In Table 3 are represented the signals decomposed using Daubechies4 

wavelet. Note that on C3 channel, at frequency band of 15…30 Hz for the right 
signal we have a Hurst exponent value of 0.6147, higher than the rest and left 
signals but with 0.018 less from the value of frequency 30…60 Hz. In the case 
of the left signal, on C4 channel we have a maximum value of 0.5855 at 
7.5…15 Hz frequency band. 

 
Table 3 

 The Average of Hurst Exponent (Multiresolution Wavelet Decomposition with 
Daubechies4) 

Daubechies4 7.5…15 Hz 15…30 Hz 30…60 Hz 
C3    
Right 0.3980 0.6147 0.6328 
Left 0.3675 0.2361 0.4499 
Rest 0.6064 0.4812 0.5579 
C4    
Right 0.3565 0.5256 0.4662 
Left 0.5855 0.3830 0.3214 
Rest 0.4211 0.4297 0.5018 

 
Table 4 

 The Average of Hurst Exponent (Multiresolution Wavelet Decomposition 
 with Coiflet4) 

Coiflet4 7.5…15 Hz 15…30 Hz 30…60 Hz 
C3    
Right 0.4622 0.3335 0.3932 
Left 0.2435 0.3255 0.3371 
Rest 0.4044 0.3788 0.3573 
C4    
Right 0.4209 0.4085 0.4520 
Left 0.6235 0.4289 0.5063 
Rest 0.3361 0.4114 0.5723 
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In Table 4 are displayed the results of signals multiresolution wavelet 
decomposition, using Coiflet4. A maximum value for the right signal is on C3 
channel at 7.5…15 Hz frequency band. On C4 channel the maximum value is 
for the left signal also at 7.5…15 Hz frequency band. 

 

4. Conclusions 

We applied our analysis on C3 and C4 channels of the EEG signals 
recorded for five subjects. We have performed a multiresolution analysis of 
these signals by means of four types of wavelets. Multiresolution wavelet 
analysis allows us to decompose the signal into sub-bands components. The 
method allows reducing the dimension of the data and this is an important 
advantage.  

We have obtained good results for Hurst exponent with Higuchi’s 
method and that highlights the features of sensorimotor rhythms. These rhythms 
occur in the contralateral side of the hand movement. Therefore, when 
imagining the right hand movement, in the left side of the brain, a 
desynchronization occurs on C3 channel, while in the case of left hand 
imagining movement, desynchronization occurs in the right side of the brain, on 
C4 channel. The best values for the Hurst coefficient were obtained with 
Daubechies2 mother wavelet.  

In future research, we intend to employ other methods for estimating 
the Hurst exponent. 
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EVIDENŢIEREA RITMURILOR SENZORIMOTOARE CU AJUTORUL ANALIZEI 

WAVELET MULTIREZOLUŢIE ŞI A ESTIMATORULUI HURST 
 

(Rezumat) 
 

Scopul acestei lucrări este de a pune în evidenţă ritmurile senzorimotoare (mu 
şi beta) produse în timpul imaginării mişcării mâinii drepte sau stângi. Semnalele 
electroencefalografice (EEG) au fost înregistrate cu ajutorul modului g.MOBIlab+ prin 
intermediul a 8 electrozi activi plasaţi pe scalp. Semnalele au fost descompuse wavelet 
multirezoluţie în sub-benzile de interes 7,5...15 Hz ritm mu şi 15...30 Hz ritm beta. 
Pentru semnalele descompuse cu diferite waveleturi, se aplică metoda Higuchi de 
estimare a exponentului Hurst, pe canalele C3 şi C4. Acestă metodă permite 
evidenţierea, pe cale matematică, a prezenţei ritmurilor senzorimotoare pe semnalele 
înregistrate. 



 


