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Abstract. The two-grid coupled Cellular Neural Networks (CNN’s) have
been intense studied as nonlinear and linear circuits. One of the applications that
the author has already published results in conference papers is the possibility of
using the double layer CNN as linear circuit and as a features extractor for
textures classification application. In this paper the author, using numerical
methods, has analysed the robustness of non-homogenous CNN in such
application.
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1. Introduction

Cellular Neural Networks (CNN’s) are homogeneous arrays of identical
and identically coupled cells (Chua & Yang, 1998). Among various types of
CNN’s, one particular type is that who can produce Turing patterns (Turing,
1952). This type of CNN consists of a “sandwich” architecture: there are arrays
of two-ports second order cells sandwiched between two resistive grids. Usually
the CNN is a nonlinear circuit, but, also it can be used as a linear circuit (Goras
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& Ungureanu, 2004; Ungureanu et al., 2006). In this situation, the double-layer
CNN is a band-pass circular filter and has been used for images classification
(Ungureanu et al., 2006). In paper the robustness of filter parameters variation for
textures classification has been analysed.

2 Two-Grid Coupled CNN Architecture

The double layer CNN is a non-linear circuit. The nonlinearity is
represented by a nonlinear resistor which has a linear central part of
characteristics. The architecture of a two-ports cell and the i-v characteristic of
the piecewise nonlinear resistor are presented in Fig. 1 (Goras et al., 1995).
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Fig. 1 — Two-ports cell and i—u characteristic of the piecewise nonlinear resistor.

The architectures for 1-D and 2-D CNN are presented in Fig. 2, where u
and v denotes the two resistive grids.

Fig. 2 — Sketch of a 1-D two-grid coupled CNN architecture (a)
and the way towards a 2-D array (b).

A cell consisting of four linear elements including a voltage controlled
current source and a nonlinear resistor is described by the egs.

ip=fuv)=-G, - f(u)+G,,
izzg(u-v)i1=(G—g)U—Gv. (1)

For a circuit composed of M x N cells the egs. that describe a 2-D CNN
are (Goras et al., 1995):



Bul. Inst. Polit. Iasi, t. LIX (LVIII), f. 2, 2013 25

cdu® o v
gt (U; V) + G, Vi, (i=0,.,M-1,
. 2)
dy (1) J=0,...,N -1, (
Cv# =g (uij rvij) + Gvvzvij J
where szij =Xy t X T Xy T Xiy — 4%; Is the Laplacean.

With the notations (Goras et al., 1995):

1. G G 1 Cos
7=C—u1 D, =c D, = c,’ g(u;.vy) = C, g (u; V), (3)

the linearization of these egs. gives

du® _ cu s D Vv

qi = Uy + W)+ DV, 2o M -1
dv (t j=0,..,N-1), )
Vclit( ) = 7(guuij + gvvij)+ vazvij' . )

where f, , f,, gu , gy are the elements of the Jacobian matrix of f(u,v) and g(u,v),
D, and D, are the diffusion coefficients and y is a scaling coefficient.

Although the circuit is basically nonlinear, if no cell will reach
saturation (all cell voltages are in the central linear part of the nonlinear
characteristics) the circuit behaves like a linear circuit. In this situation, the
analysis simplifies due to linearity and symmetry.

The system of egs. (4) can be transformed into the following system of
egs. (Goras et al., 1995):

M-IN-1

uij (t) = z Z(DMN (i1j1m1n)ﬁmn (t)1

v A ©)
Vij (t) = z Z(DMN (i,j,m,n)an (t)1

m=0n=0
(i=0,..M -1 j=0..,N-1),

where @®yn(i, j, m, n) are eigenfunctions (which depend on the boundary
conditions) of the 2-D Laplacean i.e., V’®,, (i, j,m,n) = -k @, (i, j,m,n)
and - kfnn are the eigenvalues, proportional to the square (or sum of squares) of

sine functions (Goras et al., 1995).
The solution of the 2-D CNN equations is (Goras et al., 1995):
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For ring conditions

Uim =Ujo Upm,j =Ug,j
’ © and . " for u; j layer
U1 =Uma U j=Umj

and

Vim =V Vy i =Vo

M i,0 M,j — "0,]

and ,for v; ; layer,
Vi1 =Vima Vo) = VM-

the eigenvectors are the complex exponentials of Discreet Fourier Transform
(Goras et al., 1995)

. Prmi
DOy @, j,mn)y=eM e N~
The values A, and A,,, represent the roots of the characteristic

polynomial obtained from differential egs. (4). Making the change of variable
and taking the scalar product of both sides of the egs. (4) the dynamics of the
2-D CNN is described by the following set of pairs of decoupled linear egs.
(Goras et al., 1995):

1 £, f D i
il R e O | m=0,..M -1 n=0..N-1. ()
v 9 9 0 D, |)[Vm

Thus, the set of 2 x M x N coupled differential egs. in the u and v
variables transforms into M sets of pairs of second order differential egs. in the
new variables: the amplitudes of the spatial components of the voltages (Goras
et al., 1995)

lr?n +)“mn[krin(Du + Dv)_y( fu + gv)]+ Dukar‘rlm -
—(D,f, +D,09,)K%, +(f,g, - f,0,) =0, 8)
(n=0,....,N-1; m=0,...,M -1).

As for every linear circuit, in order to have an unstable CNN, some
eigenvalues A, with positive real part, must exist (Goras et al., 1995)
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Thus a band of unstable modes will result. The values of m and n for
which the real part of A, is positive, will correspond to the band of stable

modes. So, the conditions that must be fulfilled, in order to have a band of
unstable modes, will result (Goras et al., 1995)

9)

Re(,,(k2,)| =%e

f, +9, <0,

1Eugv - fvgu >0’ (10)
D, f, + D,9, >0,

(D, f, - D,g,)* +4D,D,f,g, >0.
For specified values of CNN parameters, the variation of the real part of

the roots can be represented. Two dispersion curves as those presented in Fig. 3
forf,=0.1,f,=-1,9,=0.1, g,=-0.2, D, = 1, will result.

D, =65,y =12 D, =50,y =45

Fig. 3 — Typical dispersion curve.

3. Linear Filtering

It has been shown that Turing patterns appear if there is a band of
unstable modes having positive eigenvalues, which will grow in time until some
nonlinearity limits their growth (Goras & Ungureanu, 2004).

As already mentioned, in order to have a linear two-grid CNN, no cell
should reach saturation (all cell voltages are in the central linear part of the
nonlinear characteristics) (Goras et al., 1995; Goras & Ungureanu, 2004). This
happens if the transient toward a pattern is frozen at a given time, t,, before any
cell nonlinearity has been reached. In such a case, the CNN behaves as a linear
spatial filter having a spatial frequency characteristic dependent on t,.
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Considering vy = 0, the behavior of the network can be described by
associating a time varying spatial transfer function, as a ratio between the
amplitudes of the modes at a given moment, t,, and their initial amplitudes
(Ungureanu et al., 2006)

Hon () = GAmn &) _ o =7 fu + Dykan)e ™2 — (Ayny — 7 f, + Dykag e )
mn Umn (0) A‘mnl _ A«mnz

The frequency characteristic of the two-grid CNN's described by the
following parameters: f, = 0.1, f,=-1,9,=0.1, 9, =-0.2, D, =1, D, =50, y =38
and calculated for the moment, t, = 1 is presented in Fig. 4.

Fig. 4 — Frequency characteristic of a two-grid
CNN’s at the moment 1.

Using this result, a band of band-pass filters can be designed, which
have been already used as features extractors for textures classification
purposes. The classification method is a classical one and has been presented by
Ungureanu et al., 2006 and Alecsandrescu et al., 2008. It consists of five band-
pass filters used for feature extraction (for every filtered image, the L2 norm has
been calculated). It will result a five elements feature vector, which represents
that type of texture. For classification, the distance between features vectors has
been calculated and the nearest neighbor algorithm has been used. In Fig. 5, the
amplitude characteristics of the five filters are presented. For comparison the
corresponding ideal circular also, is presented.

Fig. 5—a - Circular ideal filter characteristics and their superposition;
b — corresponding filter characteristics implemented with homogeneous CNN’s.

For the five two-grid CNN’s the following parameters have been used:
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Filter 1 f,=01f =-19,=019,=-02D,=1D,=50,y =69,t, =2.3
Filter 2 f,=01f,=-19,=0.19,=-02,D,=1D, =50,y =33,t,=2.5
Filter 3 f,=01f,=-19,=019,=-02D,=1D, =50,y =14,t, =4.5
Filter 4 f,=0.1f,=-1,9,=019,=-02,D,=1D, =50,y =55,t, =11
Filter 5 f,=01f,=-1,9,=019,=-02,D,=1D, =50,y =2,t, =30

For analysis, the Brodatz database (Brodatz, 1966) has been used. The
data base consists of 16 texture types having the resolution 128 x 128. Each
texture type will be represented by 28 different images, each image being
rotated with 10 angles (0°, 20°, 30°, 45°, 60°, 70°, 90°, 120°, 135°, 150°). The 16
textures and the 10th texture rotated with 10 angles are presented in Fig. 6.

Fig. 6 — Textures from Brodatz database.

The results have been reported by Ungureanu et al., 2006. For
homogeneous CNN the classification performance was 97.37%.

4. Nonhomogenous Linear Two-Grid CNN'’s

The effect on classification performances of CNN parameters variations
has been studied. In such a case, the system of egs. (4), becomes

du;; (t)
#Zy(fuijuij + fVijvij)+ DUVZUij,
(11)
dv;; (t) )
dt :y(gu,luu +gvuvlj)+va VI]I

(i=0,....M -1 j=0,..,N-1)..

The frequency responses for a realization of the nonhomogeneous filter
for 10% variation are presented in Fig. 7. The responses have been obtained
using 2-D signal with zeros and just one nonzero element (e.g. discrete Dirac).
The CNN has been simulated using Euler method to solve differential egs.
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From the Fig. 7 it can be observed that the parameters variance affects
especially the filters with high frequency bands.

In order to analyse the performances of the circuit a Gaussian
distribution of CNN parameters with variance 5%, 10%, 20% of the parameters
nominal value has been used.

Filter 2

Filter 3 Filter 4

Filter 5
Fig. 7 — Frequency characteristics for a nonhomogenous 10% variation of CNN
parameters.

Texture classification system performances are presented in Fig. 8. For
5% and 10% the results are approximately the same as those for homogenous
CNN. For 20% parameters variation, the performances have decreased with 3%.
In order to use two-grid CNN’s for textures classification, the circuit must have
a band of unstable modes. Otherwise, after loading the initial conditions, the
evolution of the capacitors voltage will evolve towards zero. So, it is important
to make sure that if the homogenous CNN is unstable, the hon-homogenous one
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it is also unstable. Unfortunately where there are not conditions for unstable
two-grid CNN’s like whose from egs. (10).
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Fig. 8 — Recognition performance for ten CNN’s realizations.

One solution is the statistical analysis: for a large number of CNN’s
parameters variations the circuit must remain unstable (e.g. the largest real part
of the eigenvectors must be positive).

Fig. 9 presents the maxima eigenvalues real part; obtained through
simulations, for 1,000 CNN’s parameters variations. For each filter, the matrix
eigenvalues correspond to the system of differential egs.

[ dug(t) |
dt
du, (1 | Uoo(t) |
dt ‘
: u; (1)
duyy (t) :
t i=0,..M-1
dt =U, penn s (V) , where {I_ (12)
dvg, (1) Voo (1) j=0,.,N-1.
dt :
: vi; (t)
dv;; (t) :
d_t | Vun () |
dvyy (1)
L dt |
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Fig. 9 — The real part eigenvalues maxima for each of five filters.
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The matrix U, ;.. has been obtained from the system of differential

egs. (11). Has been also plotted, using dotted line the maxima eigenvalues real
part for the homogenous CNN. From these figures can be observed that, for
10% variations of 2-D CNN parameters, the CNN is unstable (the maxima of
eigenvalues real parts are all positive).

In Fig. 10, the largest values of eigenvalues real parts for homogenous
(dotted line) and non-homogenous CNN (solid line) are presented. From the
simulations it can be observed that the biggest non-homogenous CNN
eigenvalues real parts are larger than homogenous CNN eigenvalues real parts.
This observation can ensure that an implementation of a designed unstable
double layer CNN will, also, be unstable.

5. Conclusions

In paper the robustness of double-layer CNN parameters variation for
textures classification has been presented. Although there isn’t an analytical
method for specify the stable or unstable character of non-homogenous double-
layer CNN, through simulations has been observed that for 10% parameter
variations, the circuit is unstable and can be used for textures classification
applications.
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ANALIZA ROBUSTETII CLASIFICARII TEXTURILOR FOLOSIND
RETELE NEURONALE CELULARE DE TIP DUBLU STRAT
NEOMOGENE

(Rezumat)

Se prezintad rezultatele obtinute de autor in ceea ce priveste stabilitatea
circuitelor neurale celulare (RNC) de tip dublu strat neomogene. Autorul a publicat deja
n alte articole rezultatele obtinute in ceea ce priveste posibilitatea utilizdrii RNC de tip
dublu strat liniare ca extractori de trasaturi in aplicatii de clasificare a texturilor. Pentru
ca o RNC de tip dublu strat sa poata fi folosita in astfel de aplicatii trebuie sa-si pastreze
caracterul instabil chiar daca circuitul este neomogen (parametrii celulei variaza de la o
celuld la alta). In literatura de specialitate nu exista deocamdata publicati o metoda
analiticdi de a stabili caracterul stabil sau instabil al unei RNC de tip dublu strat
neomogen. In acest articol, pentru analiza stabilitatii s-au utilizat metode numerice.



