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Abstract. The two-grid coupled Cellular Neural Networks (CNN’s) have 
been intense studied as nonlinear and linear circuits. One of the applications that 
the author has already published results in conference papers is the possibility of 
using the double layer CNN as linear circuit and as a features extractor for 
textures classification application. In this paper the author, using numerical 
methods, has analysed the robustness of non-homogenous CNN in such 
application. 
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1. Introduction 
 

Cellular Neural Networks (CNN’s) are homogeneous arrays of identical 
and identically coupled cells (Chua & Yang, 1998). Among various types of 
CNN’s, one particular type is that who can produce Turing patterns (Turing, 
1952). This type of CNN consists of a “sandwich” architecture: there are arrays 
of two-ports second order cells sandwiched between two resistive grids. Usually 
the CNN is a nonlinear circuit, but, also it can be used as a linear circuit (Goraş 
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& Ungureanu, 2004; Ungureanu et al., 2006). In this situation, the double-layer 
CNN is a band-pass circular filter and has been used for images classification 
(Ungureanu et al., 2006). In paper the robustness of filter parameters variation for 
textures classification has been analysed. 

2 Two-Grid Coupled CNN Architecture 

The double layer CNN is a non-linear circuit. The nonlinearity is 
represented by a nonlinear resistor which has a linear central part of 
characteristics. The architecture of a two-ports cell and the i-v characteristic of 
the piecewise nonlinear resistor are presented in Fig. 1 (Goraş et al., 1995). 

 

 
Fig. 1 – Two-ports cell and i–u characteristic of the piecewise nonlinear resistor. 

 
The architectures for 1-D and 2-D CNN are presented in Fig. 2, where u 

and v denotes the two resistive grids. 

 
a                                                        b 

Fig. 2 – Sketch of a 1-D two-grid coupled CNN architecture (a)  
and the way towards a 2-D array (b). 

 
A cell consisting of four linear elements including a voltage controlled 

current source and a nonlinear resistor is described by the eqs. 
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For a circuit composed of M  N cells the eqs. that describe a 2-D CNN 

are (Goraş et al., 1995): 
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With the notations (Goraş et al., 1995): 
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the linearization of these eqs. gives 
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(4) 

 
where fu , fv , gu , gv are the elements of the Jacobian matrix of f(u,v) and g(u,v), 
Du and Dv are the diffusion coefficients and  is a scaling coefficient. 

Although the circuit is basically nonlinear, if no cell will reach 
saturation (all cell voltages are in the central linear part of the nonlinear 
characteristics) the circuit behaves like a linear circuit. In this situation, the 
analysis simplifies due to linearity and symmetry. 

The system of eqs. (4) can be transformed into the following system of 
eqs. (Goraş et al., 1995): 
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(5) 

 
where ФMN(i, j, m, n) are eigenfunctions (which depend on the boundary 
conditions) of the 2-D Laplacean i.e., ),,,(),,,( 22 nmjiknmji MNmnMN   

and – 2
mnk are the eigenvalues, proportional to the square (or sum of squares) of 

sine functions (Goraş et al., 1995). 
The solution of the 2-D CNN equations is (Goraş et al., 1995): 
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For ring conditions  
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the eigenvectors are the complex exponentials of Discreet Fourier Transform 
(Goraş et al., 1995) 
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The values 1mn  and 2mn  represent the roots of the characteristic 
polynomial obtained from differential eqs. (4). Making the change of variable 
and  taking the scalar product of both sides of the eqs. (4) the  dynamics of the 
2-D CNN is described by the following set of pairs of decoupled linear eqs. 
(Goraş et al., 1995): 
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Thus, the set of 2  M  N coupled differential eqs. in the u and v 

variables transforms into M sets of pairs of second order differential eqs. in the 
new variables: the amplitudes of the spatial components of the voltages (Goraş 
et al., 1995) 
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(8) 

 

As for every linear circuit, in order to have an unstable CNN, some 
eigenvalues mn with positive real part, must exist (Goraş et al., 1995) 
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Thus a band of unstable modes will result. The values of m and n for 

which the real part of mn  is positive, will correspond to the band of stable 
modes. So, the conditions that must be fulfilled, in order to have a band of 
unstable modes, will result (Goraş et al., 1995) 
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For specified values of CNN parameters, the variation of the real part of 

the roots can be represented. Two dispersion curves as those presented in Fig. 3 
for fu = 0.1, fv = –1, gu = 0.1, gv = –0.2, Du = 1, will result. 

 

  
65, 12vD    50, 45vD    

Fig. 3 – Typical dispersion curve. 

3. Linear Filtering 

It has been shown that Turing patterns appear if there is a band of 
unstable modes having positive eigenvalues, which will grow in time until some 
nonlinearity limits their growth (Goraş & Ungureanu, 2004). 

As already mentioned, in order to have a linear two-grid CNN, no cell 
should reach saturation (all cell voltages are in the central linear part of the 
nonlinear characteristics) (Goraş et al., 1995; Goraş & Ungureanu, 2004). This 
happens if the transient toward a pattern is frozen at a given time, t0, before any 
cell nonlinearity has been reached. In such a case, the CNN behaves as a linear 
spatial filter having a spatial frequency characteristic dependent on t0. 
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Considering vmn = 0, the behavior of the network can be described by 
associating a time varying spatial transfer function, as a ratio between the 
amplitudes of the modes at a given moment, t0 , and their initial amplitudes 
(Ungureanu et al., 2006) 
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The frequency characteristic of the two-grid CNN's described by the 

following parameters: fu = 0.1, fv = –1, gu = 0.1, gv = –0.2, Du = 1, Dv = 50, γ =38     
and calculated for the moment, t0 = 1 is presented in Fig. 4.  

 
Fig. 4 – Frequency characteristic of a two-grid  

CNN’s at the moment 1. 
 

Using this result, a band of band-pass filters can be designed, which 
have been already used as features extractors for textures classification 
purposes. The classification method is a classical one and has been presented by 
Ungureanu et al., 2006 and Alecsandrescu et al., 2008. It consists of five band-
pass filters used for feature extraction (for every filtered image, the L2 norm has 
been calculated). It will result a five elements feature vector, which represents 
that type of texture. For classification, the distance between features vectors has 
been calculated and the nearest neighbor algorithm has been used. In Fig. 5, the 
amplitude characteristics of the five filters are presented. For comparison the 
corresponding ideal circular also, is presented. 

Fig. 5 – a – Circular ideal filter characteristics and their superposition;  
b – corresponding filter characteristics implemented with homogeneous CNN’s. 

 
For the five two-grid CNN’s the following parameters have been used: 

 
a  

 
b 
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Filter 1 00.1, 1, 0.1, 0.2, 1, 50, 69, 2.3u v u v u vf f g g D D t           
Filter 2 00.1, 1, 0.1, 0.2, 1, 50, 33, 2.5u v u v u vf f g g D D t           
Filter 3 00.1, 1, 0.1, 0.2, 1, 50, 14, 4.5u v u v u vf f g g D D t           
Filter 4 00.1, 1, 0.1, 0.2, 1, 50, 5.5, 11u v u v u vf f g g D D t           
Filter 5 00.1, 1, 0.1, 0.2, 1, 50, 2, 30u v u v u vf f g g D D t           

 
For analysis, the Brodatz database (Brodatz, 1966) has been used. The 

data base consists of 16 texture types having the resolution 128 × 128. Each 
texture type will be represented by 28 different images, each image being 
rotated with 10 angles (0º, 20º, 30º, 45º, 60º, 70º, 90º, 120º, 135º, 150º). The 16 
textures and the 10th texture rotated with 10 angles are presented in Fig. 6. 

  

 

Fig. 6 – Textures from Brodatz database. 
 
The results have been reported by Ungureanu et al., 2006. For 

homogeneous CNN the classification performance was 97.37%. 

4. Nonhomogenous Linear Two-Grid CNN’s 

The effect on classification performances of CNN parameters variations 
has been studied. In such a case, the system of eqs. (4), becomes 
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(11) 

The frequency responses for a realization of the nonhomogeneous filter 
for 10% variation are presented in Fig. 7. The responses have been obtained 
using 2-D signal with zeros and just one nonzero element (e.g. discrete Dirac). 
The CNN has been simulated using Euler method to solve differential eqs. 
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From the Fig. 7 it can be observed that the parameters variance affects 
especially the filters with high frequency bands. 

In order to analyse the performances of the circuit a Gaussian 
distribution of CNN parameters with variance 5%, 10%, 20% of the parameters 
nominal value has been used. 

 

Fig. 7 –  Frequency characteristics for a nonhomogenous 10% variation of CNN 
parameters. 

 
Texture classification system performances are presented in Fig. 8. For 

5% and 10% the results are approximately the same as those for homogenous 
CNN. For 20% parameters variation, the performances have decreased with 3%. 
In order to use two-grid CNN’s for textures classification, the circuit must have 
a band of unstable modes. Otherwise, after loading the initial conditions, the 
evolution of the capacitors voltage will evolve towards zero. So, it is important 
to make sure that if the homogenous CNN is unstable, the non-homogenous one 

  
Filter 1 Filter 2 

  
Filter 3 Filter 4 

 
Filter 5 
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it is also unstable. Unfortunately where there are not conditions for unstable 
two-grid CNN’s like whose from eqs. (10). 
 

 
Fig. 8 – Recognition performance for ten CNN’s realizations. 

 
One solution is the statistical analysis: for a large number of CNN’s 

parameters variations the circuit must remain unstable (e.g. the largest real part 
of the eigenvectors must be positive). 

Fig. 9 presents the maxima eigenvalues real part; obtained through 
simulations, for 1,000 CNN’s parameters variations. For each filter, the matrix 
eigenvalues correspond to the system of differential eqs. 
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Fig. 9 – The real part eigenvalues maxima for each of five filters. 
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Fig. 10 – Eigenvalues real part for homogeneous and non-homogeneous 2-D CNN. 
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The matrix 2 D CNNU   has been obtained from the system of differential 
eqs. (11). Has been also plotted, using dotted line the maxima eigenvalues real 
part for the homogenous CNN. From these figures can be observed that, for 
10% variations of 2-D CNN parameters, the CNN is unstable (the maxima of 
eigenvalues real parts are all positive). 

In Fig. 10, the largest values of eigenvalues real parts for homogenous 
(dotted line) and non-homogenous CNN (solid line) are presented. From the 
simulations it can be observed that the biggest non-homogenous CNN 
eigenvalues real parts are larger than homogenous CNN eigenvalues real parts. 
This observation can ensure that an implementation of a designed unstable 
double layer CNN will, also, be unstable. 

 
 

5. Conclusions 

In paper the robustness of double-layer CNN parameters variation for 
textures classification has been presented. Although there isn’t an analytical 
method for specify the stable or unstable character of non-homogenous double-
layer CNN, through simulations has been observed that for 10% parameter 
variations, the circuit is unstable and can be used for textures classification 
applications. 
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ANALIZA ROBUSTEŢII CLASIFICĂRII TEXTURILOR FOLOSIND 
REŢELE NEURONALE CELULARE DE TIP DUBLU STRAT 

NEOMOGENE 
 

(Rezumat) 
 

Se prezintă rezultatele obţinute de autor în ceea ce priveşte stabilitatea 
circuitelor neurale celulare (RNC) de tip dublu strat neomogene. Autorul a publicat deja 
în alte articole rezultatele obţinute în ceea ce priveşte posibilitatea utilizării RNC de tip 
dublu strat liniare ca extractori de trăsături în aplicaţii de clasificare a texturilor. Pentru 
ca o RNC de tip dublu strat să poată fi folosită în astfel de aplicaţii trebuie să-şi păstreze 
caracterul instabil chiar dacă circuitul este neomogen (parametrii celulei variază de la o 
celulă la alta). În literatura de specialitate nu există deocamdata publicată o metodă 
analitică de a stabili caracterul stabil sau instabil al unei RNC de tip dublu strat 
neomogen. În acest articol, pentru analiza stabilitaţii s-au utilizat metode numerice. 


