# THE ECONOMIC USABILITY FACTOR ANALYSIS OF 110 kV LINES FROM ELECTRIC ENERGY REPARTITION SYSTEMS 

## BY

GHEORGHE GEORGESCU** BOGDAN NEAGU and EDUARD PAVELESCU<br>"Gheorghe Asachi" Technical University of Iaşi<br>Faculty of Electrical Engineering

Received: May 5, 2013
Accepted for publication: June 27, 2013


#### Abstract

A rational and efficient operation for electric energy repartition and distribution systems from technical and economical point of view is conditioned by their ability to allow the increase of electric energy transit yield, active power and energy losses minimization, the improvement of power quality delivered to consumers, etc. Considering these issues, in the paper the economic usability factor (EUF) at most highly loaded working day of the cold winter state for the 110 kV lines located in the $\mathrm{N}-\mathrm{E}$ area from our country is analysed. Based on the results supplied can be selected the power repartition system elements power lines and transformers that will be subjected to a more careful and detailed analysis in order to increase the available opportunities of the considered repartition system to achieve the pursued desiderata of each electric energy territorial repartition and distribution company.


Key words: repartition lines; economic usability factor.

## 1. Introduction

The power networks planning and the rational designing represent a highly current concept, both on the world and our country level. The continuous increase of the electric energy consumers installed capacity, of their number, as

[^0]well as the increase of the consumption density in urban agglomerations have determined, the performance of even more elaborated studies and analyses in order to find new solutions for the consumer supply with high power quality, with power and active energy losses as small as possible, smaller current operation costs, etc.

Electric energy repartition public systems from our country are made up of overhead and cable lines with 110 kV nominal voltages, $110 \mathrm{kV} / \mathrm{MV}$ stations and 110 kV or MV switching substations intended for electricity territorial repartition, and for supply of consumers that have electric energy delimitation points with supplier at these voltages.

Taking into account the consumption current levels, the MVA/ $\mathrm{km}^{2}$ load density and the consumption forecast for a 15 to 20 years perspective, the voltage of repartition networks is currently 110 kV and will develop also at this voltage. Typically, the 110 kV repartition networks operate in looped or complex looped configuration; the electric energy supply being performed from the least two different injection points bars of the power system or local power plants (Georgescu, 2007; Ionescu et al., 1998; PE132, 2003).

Regarding the policy on power quality supplied, power and energy losses minimization, power transmission yield and the related management methods; they represent priorities for each territorial electricity distribution and supply company. The aforementioned priorities must be harmonized with the general company development strategy, with Quality - Environment - Health and Occupational Safety integrated management system.

## 2. Electric Energy Repartition and Distribution System Monitoring

Both in the public electric energy repartition and distribution systems (ERDS) design and operation stage, it is necessary to know the consumption level and the load curves for all household and tertiary consumers supplied from these systems. In time, depending on the available equipment of the territorial electricity distribution companies, for the consumed electric loads and load curves monitoring, different methods are used, such as: remote control; local monitoring devices; active and reactive energy counters; electronic data acquisition systems, etc.

The electronic data acquisition systems from a certain process represent a measurement method that has strongly developed during the last decades especially due to significant and accelerated characteristics improvement of the used equipment. This has been possible as a result of the top technological achievements in the electronics area, such as data transmission through the intensive use of optic fibre circuits.

Presently, most of the public repartition systems from our country are automatically monitored or in process of being monitored up to the MV bars level at the step-down stations, either by using the SCADA systems or by using the Guardian systems that include electronic Alpha three-phase counters (Poeată et al., 1981; Eremia et al., 2006; Georgescu et al., 2010).


#### Abstract

At the same time, the spectacular evolution of the automatic computation systems, achieving remarkable performances, especially regarding the memory and data storage capacity, such an ever increasing computation speed directly influenced the mathematical models, methods and computation algorithms improvement by boosting, step by step, the implementation of real time complex processes management that occur in ERDS. In this way, a new approach conception related to analysis, development, reconstruction and optimal operation of electric energy repartition systems with the purpose of service quality improvement have outlined Georgescu, (2007); Georgescu et al., (2011).


## 3. The Economic Utilization Factor of 110 kV Power Lines

A rational operating of an ERDS is conditioned, especially, by whole system capacity and its element ( 110 kV repartition lines, $110 \mathrm{kV} / \mathrm{MV}$ power transformers, MV feeders $-6 \mathrm{kV}, 20 \mathrm{kV}$ and LV feeders -0.4 kV , MV/ 0.4 kV power transformers) allowing both power and energy losses minimization and the improvement of power quality delivered to consumers. These aims are tracked from the design phase, when each system element must be optimal dimensioned from technical and economical point of view.

The EUF (Electric Usability Factor) values, as instructed in our country (Buhus et al., 1991; 1993) represent the ratio of total transit load effective achieved in a given year and the transition that would be economic achieved through power transformer, power line or entire analysed system if was economical dimensioned in concrete conditions from the analysed year.

It must be noticed that during the years, the economic optimum point can be modified, when load curve indicators is modified (for example: maximum load duration) or may be significant changes in system prices both in our country and world market. Taking into account the EUF signification, these values should be determined in each year, in order to emphasize in this manner the operating installations where important deviations are recorded as compared to technical-economical optimum from that respective stage (Buhuş et al., 1991; 1993). At the same time, the EUF periodical establishing must be interpreted as a necessary action in current operation that sets to systematically follow up the economic health and the possibilities that are still available to the public ERDS.

The 110 kV power lines of ERDS from our country are considered to have been designed from the technical and economical point of view corresponding to the maximum power duration, $T_{S}$, made in the previous operation year to the analysis.

Taking into account the present standards from our country, the circuits number and the phase conductors section that are ultimately adopted for 110 kV cable or overhead power lines must be the higher than the resulted values for the technical section $\left(s_{\text {tech }}\right)$ and the economic section $\left(s_{\text {ec }}\right)$, that is (Poeată et al.,

1981; Ionescu et al., 1998; Georgescu, 2007; 2010):

$$
s=\operatorname{Max}\left(s_{\mathrm{tech}}, s_{\mathrm{ec}}\right) .
$$

For EUF determination, that is the annual economical usability of a power line, the following notions and notations are used in the current practice (Buhuş et al., 1991; 1993):
$1^{\circ} I_{M_{\text {pec }}}(T)$ - maximum load taken into account when the transit capacity of a power line with the section $s$ was designed, for a maximum load duration, $T$. This load is usually expressed through the relation

$$
\begin{equation*}
I_{M_{\mathrm{pec}}}(T)=s j_{\mathrm{ec}}(T) \tag{1}
\end{equation*}
$$

When using the power line nominal voltage, apparent load value, $S_{M_{\mathrm{pec}}}(T)$, can be estimated approximately with the following relation help

$$
\begin{equation*}
S_{M_{\mathrm{pec}}}(T)=\sqrt{3} U_{n} s j_{\mathrm{ec}}(T) . \tag{2}
\end{equation*}
$$

A maximum load domain corresponds to each conductor section and maximum load duration, which is economical to choose in the designing stage. Thereby, each of the $S_{M \mathrm{pec}}$ loads is situated close to the middle of economical maximum load domains corresponding to the section $s$.
$2^{\circ}$ According to the PE 135/2003 recommendations, the load domain, $I_{M c}$, for the economical choice in designing stage of the maximum section used in practice, $s_{M}$, this is situated in the following currents domain, that is

$$
\begin{equation*}
0.9 k_{j} s_{M} j_{\mathrm{ec}} \ldots 1.4 k_{j} s_{M} j_{\mathrm{ec}}, \tag{3}
\end{equation*}
$$

where $k_{j}$ represents the increase coefficient of the economical current density used in order to determine the economical number of conductors that equip a line phase or the number of different circuits. Thus, in real lines case with section $s_{M}$, upon establishing EUF, the middle of the economical usability domain mentioned above shall be considered as maximum load for economical designing. Therefore, for the power lines with the maximum section $s_{M}$, the economical designing loads shall be calculated with the following relations:

$$
\begin{equation*}
I_{M_{\mathrm{pec}}}=m s_{M} j_{\mathrm{ec}} \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
S_{M_{\mathrm{pec}}}(T)=\sqrt{3} U_{n} I_{M_{\mathrm{pec}}}(T) . \tag{5}
\end{equation*}
$$

Regarding the multiplier $m$, it shall be determined with the relation

$$
\begin{equation*}
m=\frac{0.9+1.4}{2} k_{j} . \tag{6}
\end{equation*}
$$

For example, in present standards from our country, for 110 kV overhead lines with OL-Al conductors, for the maximum section $s_{M}$, the coefficient $k_{j}$ and the multiplier $m$, respectively, the following values are recommended: $s_{M}=300 \mathrm{~mm}^{2}, k_{j}=1.35$ and $m=1.40$.
$3^{\circ}$ EUF - economic usability factor for transit capacity of a power line. For this purpose, the power line is considered to be designed from economical point of view corresponding to the maximum load duration, $T_{s}$, made in the previous operation year and it is determined with the relation

$$
\begin{equation*}
\mathrm{UDT}=\frac{I_{M}}{s j_{\mathrm{ec}}\left(T_{s}\right) m} \tag{7}
\end{equation*}
$$

It must be mentioned that for all power lines with total phase sections smaller than $s_{M}, m=1$ shall be considered.
$4^{\circ} \mathrm{CPW}$ - total cost of power and active energy losses in the power line, obtained under the economical operating conditions with total minimum updated expenses, can be evaluated with the following expression:

$$
\begin{equation*}
\mathrm{CPW}=k s L, \tag{8}
\end{equation*}
$$

where $k$ represents the increase of the power line cost with the phase conductors section $s$ (for OL-Al 110 kV overhead lines $k=120 \$ / \mathrm{km} . \mathrm{mm}^{2}$ ).
$5^{\circ} \mathrm{CPW}_{a}$ - total updated cost of the power and active energy losses for the entire study duration, when the current power line operation was performed in analysed year and it is determined with the expression

$$
\begin{equation*}
\mathrm{CPW}_{a}=\mathrm{CPW}_{\mathrm{ec}, a} \mathrm{GUT}^{2} . \tag{9}
\end{equation*}
$$

## 4. The Necessary Data for EUF Computation 110 kV Power Lines

In the literature (Poeată et al., 1981; Georgescu, 2007; Eremia et al., 2006; Ionescu et al., 1998), and actually standards, regulations and instructions from our country (Buhuş et al., 1991; 1993; PE132, 2003), official data are published necessary for the EUF computation of the power lines from the electric energy repartition public systems. Further on, only for 110 kV overhead power lines, all of these strictly necessary data are specified in Table 1.

Table 1
Values of Economical Current Densities, $j_{\mathrm{ec}},\left[\mathrm{A} / \mathrm{mm}^{2}\right]$, for the Number of Circuits and Sections Dimensioning of 110 kV Overhead Lines

| Constructive type of the line |  |  |  | $T_{\text {s, }}$ [h/year] |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 1,000 | 2,000 | 3,000 | 4,000 | 5,000 | 6,000 | 7,000 | 8,000 |
| LEA | Al | 110 kV | Al-Ol conductors | 1.33 | 1.24 | 1.16 | 1.08 | 1.00 | 0.92 | 0.85 | 0.79 |
|  | Cu | 110 kV | Uniinsulated conductors | 1.71 | 1.61 | 1.50 | 1.39 | 1.29 | 1.19 | 1.10 | 1.02 |

The economical section of active conductors of the 110 kV overhead lines is determined with the relation

$$
\begin{equation*}
s_{\mathrm{ec}}^{c}=\frac{I_{\mathrm{max}}}{j_{\mathrm{ec}}},\left[\mathrm{~mm}^{2}\right] \tag{10}
\end{equation*}
$$

where: $I_{\text {max }}$ is the maximum load in steady state, $[\mathrm{A}] ; j_{\mathrm{ec}}-$ standardized value of the economical current density, $\left[\mathrm{A} / \mathrm{mm}^{2}\right]$.

The economical current density, $j_{\mathrm{ec} N}$, standardized for determining the economical number of phase conductors or circuits, is always bigger that the economical current densities, $j_{\text {ec }}$, presented in Table 1, for the simple circuit 110 kV power lines, equipped with one conductor on each phase, that is

$$
\begin{equation*}
j_{\mathrm{ec} N}=K_{j n c} j_{\mathrm{ec}} \tag{11}
\end{equation*}
$$

In order to determine the values of the $K_{j n c}$ coefficient from (11), the following relations can be used, in two different situations, respectively:
a) As regards the increase the phase conductors number of the analysed power line, without taking into account the costs of the additional connection equipment, the following relation can be used:

$$
\begin{equation*}
K_{j}=\sqrt{1+\frac{A}{K s_{\max }}} \tag{12}
\end{equation*}
$$

b) As concerns the increase the circuits number of the analysed power line, the following relation can be also used

$$
\begin{equation*}
K_{j n c}=\sqrt{1+\frac{A+\frac{n}{L} C_{\mathrm{cel}}}{K s_{\max }}} \tag{13}
\end{equation*}
$$

where $n$ represents the number of cells with the $\operatorname{cost} C_{\text {cel }}$, which intend to equip each circuit of the designed power line.

For determining the conductors economical number, $N$, that equip a line phase, the number of circuits of an electric energy repartition power line and the normalized economical section, $s$, of each one of these conductors, according to NTE 401/03/00, proceed as it follows:
$1^{\circ}$ The optimal calculus number of the conductors, $N_{c}$, that equip a phase of the power line circuits is determined with the relation

$$
\begin{equation*}
N_{c}=\frac{I_{\max }}{j_{\mathrm{ec}} K_{j n c} s_{\max }}=\frac{s_{\mathrm{ec}}^{c}}{k_{j n c} s_{\max }} \tag{14}
\end{equation*}
$$

The adopted constructive solution regarding the conductor economical number, $N$, of each analysed line phase or circuits, shall be established through rounding to the closest integer of $N_{c}$, resulted from (14). The following cases are excepted from this rule:
a) if $N_{c} \leq 1.41, N=1$, in all the cases when economical section, $s_{\mathrm{ec}}^{c}$, determined with (10), satisfies the inequality $s_{\mathrm{cc}}^{c} \leq \sqrt{2} s_{\max }$ and $s_{\mathrm{ec}}^{c} \leq s_{\max }$;
b) when $N_{c}$ resulted from relation (14), satisfies the following inequality: $1.41<N_{c} \leq 2.5, N=2$ shall be chosen.
$2^{\circ}$ The total economical section for a power line phase shall be made with $N$ identical conductors, with section $s$, thus $s_{\mathrm{ec}}=N s$ to be as close as possible to the value of the section $s_{e c}^{c}$, established with the relation (10). In most cases, if the number $N$ is bigger than the unit, it results $s_{\mathrm{ec}}=N s_{\text {max }}$.

Regarding the $j_{\text {ec }}$ increase coefficients for conductor number determination that equip a $k_{j}$ line phase, as the economical number of line circuits, when each circuit is provided with $n=1$ cells $\left(k_{j \mid c}\right)$ or $n=2$ cells ( $k_{j 2 c}$ ), depending on line type, the conductor material and the 110 kV repartition line length, their values are indicated in Table 2 (PE132, 2003).

Table 2
Increase Coefficients of $j_{\text {ec }}$ for Economical Number of Conductors Determination that Equip a Line Phase ( $k_{j}$ ), as the Economical Number of Line Circuits, each Circuit being Provided with $n=1$ Cells $\left(k_{j 1 c}\right)$ or $n=2$ Cells $\left(k_{j 2 c}\right)$, Depending on the Line Type, Conductor Material and the Line Length $L,[\mathrm{~km}]$

| Power line type |  |  |  | $\begin{aligned} & s_{\max } \\ & \mathrm{mm}^{2} \end{aligned}$ | $K_{j}$ | No. of cells of each circuit |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $K_{1 j}$ |  | $K_{2 j}$ |
| OPL | Al | 110 kV | Conductors of OL-Al |  | 300 | 1.32 | $1.32(1+1.170 / L)^{1 / 2}$ | $1.28(1+2.340 / L)^{1 / 2}$ |
|  | Cu | 110 kV | Uninsulated conductors | 300 | 1.18 | $1.18(1+0.880 / L)^{1 / 2}$ | $1.18(1+1.760 / L)^{1 / 2}$ |

$3^{\circ}$ The economical section of a new high voltage overhead line $(110 \mathrm{kV})$, can be established through the annual maximum load ranges method, under the form of currents, $I_{\text {max }},[\mathrm{A}]$, or apparent powers $S_{\text {max }}$, [MVA]. The respective ranges are determined on the economical current density basis, indicated in Table 1 and presented for an 110 kV overhead line in Table 3. When resort to this method, for a specified usage duration of the maximum load, $T_{s}$, [ $\left.\mathrm{h} / \mathrm{year}\right]$, the corresponding table to the new power line constructive type, the load range that includes the maximum calculus load, $I_{\text {max }}$ or $S_{\text {max }}$, is chosen, and horizontally, on the first column of the selected table, there is the economical section necessary for the analysed line.

Table 3
Annual Maximum Load Ranges Defined in A or MVA and the Economical Sections, in the Case of Some New 110 kV Overhead Power Lines with OL-Al Conductors and $s_{\max }=300 \mathrm{~mm}^{2}$

| Ranges defined in amperes |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $s$ <br> $\mathrm{~mm}^{2}$ | $T_{s},[\mathrm{~h} / \mathrm{year}]$ |  |  |  |  |  |
|  | 2,000 | 3,000 | 4,000 | 5,000 | 6,000 | 7,000 |
| 150 | $0 \ldots 208$ | $0 \ldots 194$ | $0 \ldots 180$ | $0 \ldots 168$ | $0 \ldots 154$ | $0 \ldots 148$ |
| 185 | $208 \ldots 264$ | $194 \ldots 246$ | $180 \ldots 230$ | $168 \ldots 212$ | $154 \ldots 196$ | $148 \ldots 180$ |
| 240 | $264 \ldots 336$ | $246 \ldots 313$ | $230 \ldots 292$ | $212 \ldots 270$ | $196 \ldots 248$ | $180 \ldots 230$ |
| 300 | $336 \ldots 736$ | $313 \ldots 689$ | $292 \ldots 612$ | $270 \ldots 594$ | $248 \ldots 547$ | $230 \ldots 505$ |
| $2 \times 300^{*}$ | $736 \ldots 1, \ldots 00$ | $689 \ldots 1,200$ | $612 \ldots 1,130$ | $594 \ldots 1,050$ | $547 \ldots 960$ | $505 \ldots 900$ |
| Ranges defined in MVA |  |  |  |  |  |  |
| 150 | $0 \ldots 40$ | $0 \ldots 37$ | $0 \ldots 34$ | $0 \ldots 32$ | $0 \ldots .29$ | $0 \ldots 27$ |
| 185 | $40 \ldots 50$ | $37 \ldots 47$ | $34 \ldots 44$ | $32 \ldots 40$ | $29 \ldots 37$ | $27 \ldots 34$ |
| 240 | $50 \ldots 64$ | $47 \ldots 60$ | $44 \ldots 55$ | $40 \ldots 52$ | $37 \ldots 47$ | $34 \ldots 44$ |
| 300 | $64 \ldots 140$ | $60 \ldots 131$ | $55 \ldots 122$ | $52 \ldots 113$ | $47 \ldots 104$ | $44 \ldots 96$ |
| $2 \times 300^{*}$ | $140 \ldots 248$ | $131 \ldots 228$ | $122 \ldots 215$ | $113 \ldots 200$ | $104 \ldots 183$ | $96 \ldots 172$ |

*Two circuits of 20 km , each with two cells with switch; $K_{2 j}=1.40$.
It should be noted that exist concrete situations in electric energy repartition public systems where the technical restrictions are stricter than those imposed by the economic criteria. Among these cases, the followings can be mentioned: the electric energy supply continuity provided through additional investments, in order to create some new reserve paths; thermal stability in the short-term case states (short-circuits), that can occur in 20 kV network, where feeder minimum section (medium voltage distributors) from the $110 / 20 \mathrm{kV}$ step-down stations, must be at least $150 \mathrm{~mm}^{2}$, even if, in such cases, an EUF indicator of low value would be recorded, only a few percent; the minimum admissible voltage level for different consumer categories supplied with electric energy from the repartition public systems.

## 5. Case Example

If the meaning of the economical usability factor (EFY) is taken into account, its values should be determined each year in order to emphasize the operating electrical installations where important deviations are recorded as compared to the technical-economical optimum from that respective stage. At the same time, must be mentioned that during the years, the reference economic optimum can undergo changes if type and load curves indicators are modified, as for example the maximum load duration or significant changes can occur within the pricing system both in our country and in the world market.

For EUF determination of the 110 kV power lines, a public repartition system ( 110 kV repartition network and $110 \mathrm{kV} / \mathrm{MT}$ stations) was considered. This system belongs to the distribution operator from our eastern country area, namely Suceava, Neamț, Botoşani. The single line diagram of public repartition system is shown in Figs. $1 a, 1 b$ and $1 c$.


Fig. $1 a$-Single line diagram of the analysed repartition system.


Fig. $1 b$-Single line diagram of the analysed repartition system.


Fig. $1 c$-Single line diagram of the analysed repartition system.
From the single line diagram analysis of the considered system, it results that the 110 kV repartition network works in complex looped configuration at winter steady state. Also, the repartition network comprises 168 lines ( 110 kV ) with one or two circuits, and 35 step-down stations ( $110 \mathrm{kV} / \mathrm{MT}$ ). These networks supply medium voltage distribution networks ( 6 kV and 20 kV networks). In the analysed public repartition system the electric energy is injected both power system and four local power plants.

For the EUF determination corresponding to a network element (line or power transformer) is necessary to know the real active/reactive loads that transit the element and them variation for different steady state of a year.

Through the rational application of all monitoring methods of the loads
(Alpha counters, automated metering for electric energy consumption Guardian monitoring system, supervisory control and data acquisition SCADA) all active and reactive load curves at MV bars of $110 \mathrm{kV} / \mathrm{MV}$ stepdown stations during 2013 year were recorded and stored. From daily load curves analysis of cold winter state revealed that the most loaded working day was Wednesday, January 16, 2013.

In order to perform this study, the daily load curves and, particularly, the load curve of most loaded working day were processed as 24 hourly levels; each level represents the average load of one hour. Knowing the topology and material network characteristics and hourly loads to the MV station bars, and by using NEPLAN application, 24 steady state of repartition system for Wednesday January 16, 2013, were calculated.

Based on the results given by NEPLAN application, the state quantities for the 24 hourly states of the analysed repartition system, and by using the presented methodology in the previous sections of this paper the EUF values in the most loaded working day of cold winter state have been established. Thus, the results regarding the 110 kV power lines are detailed in Table 4, which comprises the following information: name of the branch point; element name (overhead power line - OPL); section; daily active, reactive and apparent energy; maximum apparent load duration per day, and per year, respectively; maximum apparent load that flows from the repartition power line; power line EUF.

Table 4
The EUF of 110 kV Repartition Power Lines from the Analysed System

| Branch point 110 kV | Element name | $\begin{gathered} s \\ \mathrm{~mm}^{2} \end{gathered}$ | $\begin{gathered} W_{P} \\ \text { MWh } \end{gathered}$ | $\begin{gathered} W_{Q} \\ \text { MVArh } \end{gathered}$ | $\begin{array}{r} S_{\max } \\ \mathrm{MVA} \end{array}$ | $\begin{gathered} W \\ \text { MVAh } \end{gathered}$ | $\begin{aligned} & T_{S} \text { day } \\ & \text { h/day } \end{aligned}$ | $T_{S}$ year h/year | $I_{\max }$ | $\begin{gathered} J_{\mathrm{ec}} \\ \mathrm{~A} / \mathrm{mm}^{2} \end{gathered}$ | $\begin{aligned} & \text { UDT } \\ & \% \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | OPL110 A-48 | 185 | 317.530 | 81.374 | 26.214 | 327.791 | 12.880 | 4701.118 | 137.586 | 1.020 | 72.912 |
|  | OPL110 A-B | 150 | 153.273 | 93.167 | 11.522 | 179.368 | 16.03 | 5852.801 | 60.472 | 0.930 | 43.349 |
|  | OPL110 A45-1 | 185 | 153.359 | 43.247 | 12.732 | 159.340 | 12.890 | 4704.929 | 66.827 | 1.020 | 35.414 |
|  | OPL110 A-46 | 185 | 130.913 | 26.344 | 6.867 | 133.537 | 20.030 | 7310.898 | 36.042 | 0.830 | 23.472 |
|  | OPL110 A-58 | 185 | 267.169 | 105.780 | 19.876 | 287.348 | 14.891 | 5435.104 | 104.322 | 0.960 | 58.740 |
|  | OPL110A-14 | 185 | 253.736 | 11.865 | 17.960 | 254.013 | 14.567 | 5317.024 | 94.268 | 0.970 | 52.532 |
|  | OPL110 A-47 | 185 | 95.231 | 123.089 | 7.319 | 155.627 | 21.900 | 7993.629 | 38.417 | 0.790 | 26.286 |
|  | OPL110 A-49 | 185 | 310.874 | 31.284 | 20.918 | 312.444 | 15.385 | 5615.385 | 109.792 | 0.950 | 62.470 |
|  | OPL110 A-56 | 185 | 172.104 | 40.095 | 18.682 | 176.713 | 9.743 | 3556.138 | 98.054 | 1.120 | 47.323 |
| B1 | OPL110 B-54 | 150 | 304.285 | 91.987 | 18.126 | 317.885 | 18.063 | 6593.123 | 95.138 | 0.880 | 72.075 |
|  | OPL110 A-B | 150 | 154.063 | 124.437 | 12.013 | 198.040 | 16.980 | 6197.748 | 3.052 | 00 | 705 |
|  | OPL110 41-B | 185 | 478.221 | 43.787 | 26.438 | 480.221 | 18.709 | 6828.659 | 138.766 | 0.860 | 87.219 |
| C-110kV | OPL110 C-57 | 185 | 46.577 | 11.362 | 6.107 | 47.943 | 8.086 | 2951.288 | 32.054 | 1.160 | 14.937 |
|  | OPL110 C-37 | 185 | 205.318 | 24.302 | 11.740 | 206.751 | 18.138 | 6620.524 | 61.622 | 0.880 | 37.851 |
|  | OPL110 C-27 | 85 | 0.000 | 6.450 | 0.272 | 6.450 | 24.425 | 8914.991 | 1.428 | 0.790 | 0.977 |
|  | OPL110 C-29 | 185 | 531.554 | 86.394 | 26.769 | 538.529 | 20.721 | 7563.164 | 140.502 | 0.820 | 92.618 |
|  | OPL110 48-C | 150 | 92.200 | 87.411 | 9.056 | 127.049 | 14.451 | 5274.546 | 47.530 | 0.980 | 32.333 |
|  | OPL110 C | 185 | 232.493 | 51.430 | 13.455 | 238.114 | 18.228 | 6653.278 | 70.620 | 0.870 | 43.877 |
|  | OPL110 C-23 | 185 | 506.53 | 37.249 | 25.266 | 507.906 | 20.706 | 7557.589 | 132.610 | 0.820 | 87.416 |
|  | OPL110 C-31 | 185 | 101.428 | 20.399 | 5.687 | 103.459 | 18.739 | 6839.685 | 29.848 | 0.860 | 18.760 |
|  | OPL110 21-C | 185 | 207.998 | 69.842 | 14.395 | 219.411 | 15.699 | 5730.285 | 75.554 | 0.940 | 43.447 |
|  | OPL110 C-17 | 185 | 132.436 | 32.739 | 7.545 | 136.423 | 18.623 | 6797.473 | 39.602 | 0.860 | 24.891 |
|  | OPL110 C | 185 | 135.650 | 36.760 | 8.436 | 140.543 | 17.160 | 6263.554 | 44.276 | 0.900 | 26.592 |
| D1-110kV | OPL110 D-52 | 185 | 73.923 | 4.821 | 4.650 | 74.080 | 16.409 | 5989.189 | 24.407 | 0.920 | 14.340 |
|  | OPL110 54-D | 150 | 679.291 | 71.922 | 32.111 | 683.088 | 21.911 | 7997.403 | 168.541 | 0.790 | 142.228 |
|  | OPL110 D-60 | 185 | 365.158 | 64.845 | 20.515 | 370.871 | 18.620 | 6796.350 | 107.677 | 0.860 | 67.679 |

Table 4 (Continuation)

| D2-110kV | OPL110 D-50 | 185 | 29.745 | 3.742 | 1.625 | 29.979 | 9.00 | 6936.413 | 8.528 | 0.850 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | OPL110 54-D | 185 | 583.886 | 72.167 | 27.764 | 588.329 | 21.82 | 7966.645 | 145.721 | 0.790 | 99.706 |
| E-110kV | OPL110 E-57 | 185 | 604.913 | 115.698 | 28.452 | 615.878 | 22.29 | 8137.964 | 149.333 | 0.790 | 102.178 |
|  | OPL110 C-E | 185 | 135.68 | 27.588 | 8.319 | 138.463 | 17.14 | 6257.154 | 43.665 | 0.900 | 26.225 |
| $3-110 \mathrm{kV}$ | OPL110 37-3 | 185 | 18.15 | 25.372 | 8.168 | 20. | 15.240 | 5562.60 | 42.869 | 0.950 | 24.392 |
|  | OPL110 | 185 | 18.961 | 28.312 | 2.245 | 34.075 | 15.6 | 5707.181 | 11.781 | 0.940 | 6.775 |
|  | OPL110 3-5 | 185 | 56.832 | 6.140 | 3.082 | 57.163 | 19.105 | 6973.464 | 16.175 | 0.850 | 10.286 |
| $4-110 \mathrm{kV}$ | OPL110 57-4 | 185 | 83.693 | 85.133 | 19.316 | 393.024 | 20. | 7649.368 | 1.38 | 0.8 | 67.657 |
|  | OPL110 4-32 | 185 | 288.234 | 49.538 | 13.7 | 292.46 | 21.929 | 8003.948 | 72.101 | 0.790 | 49.333 |
| $5-110 \mathrm{kV}$ | OPL110 3-5 | 185 | 56.832 | 5.268 | 3.081 | 57.076 | 19.0 | 6964.469 | 16.17 | 0.850 | 10.284 |
|  | OPL110 5-8 | 240 | 7.807 | 28.701 | 2.240 | 39.962 | 18.37 | 6707.650 | 1.75 | 0.870 | 5.630 |
| $\begin{gathered} 8-1-1 \\ 110 \mathrm{kV} \end{gathered}$ | OPL110 3-8 | 185 | 8.959 | 4.427 | 2.153 | 30.921 | 14.79 | 5400.258 | 1.29 | 0.970 | 296 |
|  | OPL110 5-8 | 240 | 812 | 001 | 2.13 | 37.397 | 18.026 | 6579.43 | 11.216 | 0.880 | 5.310 |
|  | OPL110 19-8 | 185 | 3.757 | 429 | 2.903 | 54.842 | 19. | 7101.340 | 15.239 | 0.840 | 9.806 |
| 14-110kV | OPL110 A-14 | 185 | 250.758 | 59 | 17.775 | 263.087 | 15.245 | 5564.525 | . 29 | . 95 | 53.083 |
|  | OPL110 14-49 | 185 | 221.682 | 69.016 | 16.176 | 232.177 | 14.78 | 5396.240 | 4.899 | 0.97 | 47.311 |
|  | OPL110 14-36 | 185 | 299.754 | 47.663 | 18.20 | 303.520 | 17.1 | 6266.98 | . 56 | 0.900 | 57.397 |
|  | OPL110 34-14 | 185 | 128.629 | 86.553 | 13.041 | 155.038 | 12.24 | 4469.534 | . 447 | . 040 | 35.575 |
| 15.110 kV | OPL110 57-15 | 185 | 79.737 | 24.374 | 4.469 | 83.379 | 19.217 | 7014.171 | 456 | . 850 | 14.917 |
| 16 | OPL110 22-16 | 185 | 204.956 | 14.090 | 11.102 | 205.440 | 19.06 | 6956.856 | 8.270 | 0.850 | 37.056 |
|  | OPL110 16-18 | 185 | 26.926 | 52.083 | 3.356 | 58.631 | 17.997 | 6568.881 | 7.612 | 0.880 | 10.818 |
| 17-110kV | OPL110 C-17 | 185 | 132.365 | 39.431 | . 606 | 138.113 | 18.703 | 6.501 | 39.922 | 0.860 | . 93 |
|  | OPL110 17-26 | 185 | 48.464 | 95 | 3.2 | 424 | 15.721 | 5738.112 | 16.996 | 0.940 | 73 |
| 18-110k | OPL110 16-18 | 185 | 26.943 | 35.496 | 3.239 | 44.563 | 14.17 | 5172.289 | 17.001 | . 99 | 9.282 |
|  | OPL110 18-25 | 185 | 45.213 | 44.387 | 4.511 | 63.359 | 14.46 | 5280.787 | 3.675 | 980 | 13.058 |
| 19-110kV | OPL110 19-21 | 185 | 23.767 | 16.610 | 1.923 | 28.996 | 15.53 | 5669.493 | 10.092 | 0.950 | 5.742 |
|  | OPL110 19-8 | 185 | 23.767 | 16.6 | 1.923 | 28.996 | 15. | 5669.493 | 10.092 | 0.9 | 5.742 |
| 20-110kV | OPL110 32-20 | 185 | 187.335 | 90.275 | 9.768 | 207.952 | 21.92 | 8003.397 | 51.270 | 0.790 | 35.081 |
|  | OPL110 20-24 | 185 | 0.000 | 3.215 | 0.136 | 3.215 | 24.34 | 8887.347 | 0.714 | 0.790 | 0.488 |
|  | OPL11020-29 | 185 | 215 | 223.531 | 21 | 467.164 | 22.5 | 8232.631 | 111.97 | 0.790 | 1-5 |
| 21-110kV | OPL110 21-56 | 150 | 170.245 | 10 | 18.4 | 202.196 | 11.303 | 4125.513 | 6.710 | 1.070 | 55 |
|  | OPL110 21-C | 185 | 207.446 | 52.904 | 14.219 | 214.086 | 15.5 | 5660.473 | 4.630 | 0.950 | 42.464 |
|  | OPL110 21-28 | 240 | 119.475 | 25.269 | 7.140 | 122.118 | 17.6 | 6429.737 | 37.477 | 0.890 | 17.545 |
|  | OPL110 19-21 | 185 | 23.771 | 8.696 | 2.055 | 25.312 | 12.6 | 4631.327 | 0.78 | 1.030 | 60 |
| $22-110 \mathrm{kV}$ | OPL | 185 | 205.550 | 27.831 | 11.184 | 207.426 | 19.10 | 6972.702 | 58.700 | 0.850 | 29 |
|  | OPL11033-22 | 185 | 7.511 | 92.858 | 8.499 | 134.651 | 16.3 | 5956.052 | 44.610 | 0.920 | 26.210 |
|  | OPL110 22-34 | 185 | 120.183 | 120.652 | 13.150 | 170.296 | 13.33 | 4868.526 | 9.022 | 1.010 | 36.940 |
|  | OPL110 23-22 | 185 | 312.078 | 31.624 | 17.131 | 313.676 | 18.8 | 6883.854 | . 91 | 0.850 | 57.1 |
| $23-110 \mathrm{kV}$ | OPL110 23-22 | 185 | 312.42 | 34.625 | 17.1 | 31 | 18.87 | 6890.804 | 90.013 | 0.850 | 57 |
|  | OPL110 C-23 | 185 | 502.841 | 38.044 | 25.030 | 504.278 | 20.7 | 7574.209 | 131.37 | 0.820 | 86.601 |
|  | OPL110 29-24 | 185 | 44.422 | 0.477 | 4.374 | 45.641 | 10.74 | 3922.441 | 22.960 | 1.080 | 11.492 |
| 25-110kV | OPL110 18-25 | 185 | 45.242 | 0.8 | 4.453 | 54.748 | 12.6 | 4622.104 | 3.37 | 1.03 | 12.266 |
|  | OPL11 | 185 | 45.242 | 30.830 | 4.453 | 54.748 | 12.6 | 46 | 23.372 | 1.030 | 12.266 |
| 26-110kV | OPL110 26-57 | 185 | 182.256 | 59.577 | 9.516 | 191.746 | 20 | 7575.609 | 944 | 20 | 32.923 |
|  | OPL110 27-26 | 185 | 145.694 | 23.695 | 7.750 | 147.608 | 19.6 | 7160.603 | 40.676 | 0.84 | 26.175 |
|  | OPL110 31-26 | 185 | 101.366 | 30.955 | 5.776 | 105.987 | 18.89 | 6898.116 | 30.318 | 0.86 | 19.056 |
|  | OPL110 26-13 | 240 | 0.000 | 1.879 | 079 | 1.879 | 24. | 8941.899 | 0.415 | 79 | 21 |
|  | OPL110 17-26 | 185 | 48.461 | 11.406 | 3.267 | 49.785 | 15.6 | 5728.706 | 17.148 | 0.940 | 9.861 |
| 27.110 kV | OPL110 27-26 | 185 | 145.629 | 28.752 | 7.788 | 148.440 | 19.633 | 7165.987 | 40.874 | 0.840 | 26.303 |
| 28.110 kV | OPL110 21-28 | 240 | 119.464 | 27.024 | 7.155 | 122.482 | 17.632 | 6435.734 | 37.554 | 0.890 | 17.581 |
| 29-110kV | OPL110 C-29 | 185 | 26.325 | 106.846 | 26.608 | 537.061 | 20.79 | 7588.222 | 139.65 | . 810 | 93.197 |
|  | OPL110 29-38 | 18 | 8.292 | 9.321 | 2.99 | 49.183 | 16.91 | 6173.711 | 5.720 | 0.910 | 9.338 |
|  | OPL110 29-33 | 185 | 38.359 | 104.555 | 5.783 | 111.369 | 19.836 | 7240.263 | 30.352 | 0.840 | 19.532 |
|  | OPL110 29-24 | 185 | 44.425 | 17.448 | 4.375 | 47.729 | 11.237 | 4101.685 | 22.961 | 1.070 | 11.599 |
|  | OPL11020-29 | 185 | 411.469 | 216.342 | 21.256 | 464.877 | 22.5 | 8222.127 | 111.56 | 0.790 | 76.336 |
| $31-110 \mathrm{kV}$ | OPL110 C-31 | 185 | 101.39 | 5.178 | 5.723 | 104.478 |  | 6863.10 |  | , | 18.880 |
|  | OPL110 31-26 | 185 | 101.399 | 25.178 | 5.723 | 104.478 | 18.80 | 6863.105 | 30.03 | 0.860 | 18.880 |
| $32-110 \mathrm{kV}$ | OPL110 4-32 | 185 | 286.199 | 87.468 | 14.017 | 299.267 | 21.99 | 8026.786 | 73.569 | 0.790 | 50.338 |
|  | OPL110 32-20 | 185 | 187.698 | 75.551 | 9.566 | 202.333 | 21.78 | 7951.612 | 50.210 | 0.790 | 34.355 |
| $33-110 \mathrm{kV}$ | OPL110 29-33 | 185 | 38.409 | 87.811 | 5.30 | 95.844 | 18.6 | 6793.141 | 27.840 | 0.86 | 17.498 |
|  | OPL110 33-22 | 185 | 97.311 | 109.918 | 8.712 | 146.804 | 17.356 | 6334.835 | 45.728 | 0.900 | 27.464 |
| 10 | OPL110 34-14 | 185 | 120.537 | 99.612 | 13.065 | 156.370 | 12.328 | 4499.746 | 68.571 | 1.040 | 35.640 |
|  | OPL110 22-34 | 185 | 120.537 | 99.612 | 13.065 | 156.370 | 12.328 | 4499.746 | 68.571 | 1.040 | 35.640 |
| 35.110 kV | OPL110 C-35 | 185 | 232.429 | 59.536 | 13.530 | 239.933 | 18.265 | 6666.803 | 71.015 | 0.870 | 44.122 |

Table 4 (Continuation)

| $36-110 \mathrm{kV}$ | OPL110 36-25 | 185 | 268 | 19.310 | 4.462 | 49.215 | 11.36 | 77 | 23.419 | . 070 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | OPL110 |  | 306.401 | 65. | 18.203 | 313.425 | 17. | 6473.262 | 95.540 | 80 | 58.686 |
| $37-110 \mathrm{kV}$ | OPL110 C-37 | 185 | 209.186 | 26.698 | 11.714 | 210.883 | 18.543 | 6768.089 | 483 | 0.860 | 38.644 |
|  | OPL110 37-3 | 85 | 118.353 | 23.979 | 8.192 | 120.758 | 15.184 | 5542.118 | 42.995 | 60 | 24.209 |
| 110 | OPL110 29-3 | 185 | 48.263 | 10.598 | 3.05 | 9.4 | 16.6 | 6084. | 16.024 | 0.920 | 9.415 |
| $39-110 \mathrm{kV}$ | OPL110 41-39 | 185 | 85.718 | 4.460 | 4.723 | 85.834 | 18.718 | 6831.924 | 24.791 | 0.860 | 15.582 |
| $40-110 \mathrm{kV}$ | OPL110 41-40 | 185 | 96.911 | 31.995 | 5.217 | 102.056 | 20.148 | 7353.911 | 27.384 | 0.830 | 17.834 |
| $41-110 \mathrm{kV}$ | OPL110 42-41 | 185 | 141.351 | 111.071 | 13.567 | 179.769 | 13.6 | 4981.394 | 71.210 | 1.000 | 38.492 |
|  | OPL110 4 | 185 | 85.74 | 7 | 4.719 | 032 | 18.778 | 53. | 24.768 | 0.860 | 15.568 |
|  | OPL110 41-40 | 185 | 96.931 | 28.496 | 5.159 | 101.033 | 20.17 | 7361.928 | 27.080 | 0.830 | 17.636 |
|  | OPL110 41-B | 185 | 477.538 | 42.580 | 26.397 | 479.433 | 18.707 | 6828.222 | 138.547 | 0.860 | 87.082 |
| $42-110 \mathrm{kV}$ | OPL110 58-42 | 185 | 82.690 | 167.797 | 11.219 | 187.065 | 17.17 | 6268.609 | 58.884 | 0.900 | 35.3 |
|  | OPL110 42-41 | 85 | 41.203 | 103.153 | 13.458 | 174.868 | 13.384 | 85.070 | 0.634 | 010 | 03 |
| $44-110 \mathrm{kV}$ | OPL110 45-44 | 150 | 285.119 | 42.302 | 17.481 | 288.240 | 16.98 | 6198.989 | 91.751 | 0.910 | 67.217 |
|  | OPL110 44-54 | 150 | 406.965 | 0.120 | 21.623 | 410.040 | 19.532 | 7129.040 | 113.494 | 0.840 | 90.0 |
| $\begin{aligned} & \hline 45-1- \\ & 110 \mathrm{kV} \end{aligned}$ | OPL110 45-4 | 150 | 284.899 | 42.439 | 17.457 | 288.043 | 16.996 | 6203.378 | 91.623 | 0.910 | 67.123 |
|  | OPL110 A45 | 185 | 153.672 | 51.475 | 12.866 | 162.064 | 12.9 | 4735.507 | 7.530 | 20 | 35.787 |
| $45-2$ 110k | OPL110 451-5 | 185 | 44.765 | 11.925 | 3.570 | 46.326 | 13.36 | 4878.799 | 18.737 | 1.010 | 10.028 |
| $46-110 \mathrm{kV}$ | OPL110 A-46 | 85 | 130.812 | 37.197 | 6.986 | 135.998 | 20.05 | 7318.417 | S 6688 | . 830 | 23.880 |
| $47-110 \mathrm{kV}$ | OPL110 A-47 | 185 | 95.568 | 91.528 | 6.301 | 132.328 | 21.633 | 7895.929 | 33.069 | 0.790 | 22.627 |
| $48-110 \mathrm{kV}$ | OPL110 A-48 | 185 | 315.094 | 112.879 | 25.963 | 334.703 | 13.27 | 4846.547 | 136.27 | 1.010 | 72.931 |
|  | OPL110 48-C | 150 | 91.831 | 47.434 | 8.193 | 103.358 | 12.994 | 4742.708 | 03 | 020 | 06 |
| 49 | OPL110 | 185 | 223.31 | 677 | 16.272 | 224.094 | 14.1 | 5177.391 | 85.407 | 0.990 | 46.632 |
|  | OPL110 A-49 | 185 | 309.494 | 53.186 | 20.828 | 314.031 | 15.529 | 5668.206 | 109.321 | 0.950 | 62.203 |
| $50-110 \mathrm{kV}$ | OPL110 D-50 | 185 | 29.743 | 4.967 | 1.635 | 30.155 | 18.9 | 6933.291 | 8.582 | 0.850 | 5.458 |
| 51-11 | OPL110 54-51 | 185 | . 347 | 9.559 | 3.457 | 53 | 19.38 | 7074.382 | 14 | 0.850 | 539 |
| $52-110 \mathrm{kV}$ | OPL110 D-52 | 185 | 73.911 | 8.718 | 4.667 | 74.423 | 16.425 | 5995.229 | 24.495 | 0.920 | 14.392 |
| 531110 kV | OPL110 54-53 | 185 | 40.733 | 6.400 | 2.034 | 41.233 | 20.882 | 7621.919 | 10.675 | 0.810 | 7.124 |
| 532110 kV | OPL110 54-53 | 185 | 108.016 | 17.466 | 7.904 | 109.419 | 14.26 | 5204.735 | 41.483 | 0.990 | 22.650 |
| $54-110 \mathrm{kV}$ | OPL11 | 150 | 307 | 59.719 | 18.151 | 312.867 | 17.75 | 6480.160 | 95.269 | 0.880 | 73 |
|  | OPL110 54-5 | 185 | 64.360 | 4.309 | 3.433 | 64.504 | 19.3 | 7064.019 | 18.018 | 0.850 | 11.458 |
|  | OPL110 44-54 | 150 | 410.747 | 47.228 | 21.909 | 413.453 | 19.43 | 7094.554 | 114.99 | 0.850 | 90.192 |
|  | OPL110 54-D1 | 150 | 678.001 | 71.843 | 32.042 | 681.797 | 21.916 | 7999.449 | 168.17 | 0.790 | 41.923 |
|  | OPL110 54-D | 185 | 82.94 | 763 | 27.719 | 587.595 | 21 | 7969.565 | 145.486 | . 790 | 99.545 |
|  | OPL110 54-5 | 185 | 108.0 | 14.0 | 7.889 | 108.944 | 14. | 5191.751 | 41.406 | 0.990 | 22.608 |
|  | OPL110 54-5 | 185 | 40.739 | 2.924 | 2.022 | 40.844 | 20.8 | 7594.303 | 10.612 | 0.810 | 7.082 |
|  | OPL110 54-59 | 150 | 399.560 | 96.422 | 23. | 411.030 |  | 6568.953 | 123.4 | 0.8 | 93.536 |
| $55-110 \mathrm{kV}$ | $\begin{gathered} \text { OPL110 rack } \\ 55 \end{gathered}$ | 150 |  |  | 2.039 |  |  | 65 | 10.701 | 0.880 |  |
| 56-110 | OPL110 A-56 | 185 | 17.9 | 8.037 | 18.49 | 190.521 | 10.61 | 3873.85 |  | 1.120 | 46.837 |
|  | OPL110 21-56 | 150 | 170.985 | 84.037 | 18.490 | 190.521 | 10.613 | 3873.85 | 97.045 | 1.120 | 57.765 |
| $57-110 \mathrm{kV}$ | OPL110 26-57 | 185 | 182.327 | 44.602 | 9.345 | 187.703 | 20.68 | 7551.149 | 9.050 | 810 | 32.732 |
|  | OPL110 C-5 | 185 | 42.423 | 14.164 | 2.98 | 44.725 | 15.412 | 5625.419 | 15.688 | 0.950 | 8.926 |
|  | OPL110 E-57 | 185 | 604.661 | 120.124 | 28.477 | 616.478 | 22.298 | 8138.677 | 149.465 | 0.790 | 102.268 |
|  | OPL110 57-30 | 185 | 0.000 | 3.293 | 0.139 | 3.293 | 24.401 | 8906.499 | 0.730 | 0.790 | 0.499 |
|  | OPL110 57-3 | 185 | 0.000 | 3.293 | 0.139 | 3.293 | 24.40 | 8906.499 | 0.730 | 0.790 | 0.499 |
|  | OPL110 57-1 | 185 | 79.7 | 23.261 | 4.45 | 83.062 | 19.1 | 7003.280 | 23.403 | 0.850 | 83 |
|  | OPL110 57-4 | 185 | 385.024 | 72.197 | 19.275 | 391.734 | 20.93 | 7640.766 | 101.16 | 0.810 | 67.511 |
| $58-110 \mathrm{kV}$ | OPL110 A-58 | 185 | 267.540 | 112.917 | 19.949 | 290.393 | 14.9 | 5472.492 | 104.707 | 0.960 | 58.957 |
|  | OPL110 58-4 | 185 | 82.770 | 157.814 | 10.907 | 178.203 | 16.8 | 6142.527 | 57.246 | 0.910 | 34.004 |
|  | OPL110 45-1 | 185 | 44.771 | 10.799 | 3.551 | 46.055 | 13.3 | 4875.944 | 18.638 | 1.010 | 9.975 |
| $59-110 \mathrm{kV}$ | OPL110 54-59 | 185 | 361.476 | 72.046 | 21.574 | 368.586 | 17.5 | 6422.956 | 3.2 | 0.890 | 68.773 |
|  | OPL110 59-60 | 185 | 361.848 | 24.207 | 20.201 | 362.657 | 18.49 | 6749.185 | 106.02 | 0.860 | 66.642 |
| 60 | OPL110 D-60 | 185 | 363.64 | 46.393 | 20.36 | 366.593 | 18.5 | 6769.242 | 106.86 | 0.860 | 67.166 |
|  | OPL110 59-60 | 185 | 363.646 | 46.393 | 20.36 | 366.593 | 18. | 6769.242 | 06.86 | 0.860 | 67.166 |
| st120 | $\begin{aligned} & \hline \text { OPL110 rack } \\ & 55 \end{aligned}$ | 150 | 34.771 | 61 | 2.02 | 35.07 | 17. | 6500.3 | 10.6 | 0.89 | 7.976 |
|  | OPL110 54-59 | 185 | 362.662 | 85.681 | 21.727 | 372.646 | 17.666 | 6447.956 | 114.03 | 0.890 | 69.261 |
|  | OPL110 54-55 | 150 | 397.435 | 81.065 | 23.299 | 405.618 | 17.932 | 6545.061 | 122.28 | 0.890 | 91.601 |
| F-110k | OPL110 11-F | 185 | 478.367 | 44.839 | 26.335 | 480.464 | 18.791 | 6858.850 | 38.22 | 0.860 | 86.879 |
|  | OPL110 F-9 | 185 | 567.246 | 37.911 | 31.261 | 568.511 | 18.731 | 6836.961 | 164.079 | 0.860 | 103.129 |
| 1-110kV | OPL110 8-1 | 185 | 17.414 | 40.177 | 2.176 | 43.789 | 20.732 | 7567.072 | 11.419 | 0.820 | 7.527 |
|  | OPL110 1-10 | 185 | 112.281 | 70.028 | 6.753 | 132.329 | 20.183 | 7366.892 | 35.444 | 0.830 | 23.083 |
| 2-110kV | OPL1100 8-2 | 185 | 185.615 | 28.735 | 9.885 | 187.826 | 19.571 | 7143.559 | 51.882 | 0.840 | 33.3 |

Table 4 (Continuation)

| $6-110 \mathrm{kV}$ | OPL110 10-6 | 185 | 283.844 | 18.408 | 16.065 | 284.440 | 18.237 | 6656.560 | 84.318 | 0.870 | 52.387 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | OPL110 7-6 | 185 | 194.740 | 34.005 | 10.694 | 197.687 | 19.040 | 6949.568 | 56.130 | 0.850 | 35.695 |
| $7-110 \mathrm{kV}$ | OPL110 7-6 | 185 | 193.970 | 13.461 | 10.656 | 194.437 | 18.795 | 6860.068 | 55.928 | 0.860 | 35.152 |
|  | OPL110 32-7 | 185 | 0.000 | 30.960 | 1.330 | 30.960 | 23.977 | 8751.438 | 6.981 | 0.790 | 4.776 |
| $8-2-110 \mathrm{kV}$ | OPL110 8-11 | 185 | 384.314 | 43.659 | 21.136 | 386.786 | 18.849 | 6879.936 | 110.934 | 0.860 | 69.726 |
|  | OPL110 8-2 | 185 | 185.645 | 23.531 | 9.855 | 187.130 | 19.558 | 7138.606 | 51.726 | 0.840 | 33.286 |
|  | OPL110 8-1 | 185 | 17.399 | 49.624 | 2.550 | 52.586 | 21.240 | 7752.653 | 13.384 | 0.800 | 9.043 |
| 9-110kV | OPL110 F-9 | 185 | 564.306 | 36.830 | 31.066 | 565.507 | 18.749 | 6843.512 | 163.055 | 0.860 | 102.486 |
|  | OPL110 9-12 | 185 | 502.905 | 38.978 | 27.702 | 504.413 | 18.755 | 6845.461 | 145.399 | 0.860 | 91.388 |
| $10-110 \mathrm{kV}$ | OPL110 10-6 | 185 | 285.380 | 35.915 | 16.151 | 287.631 | 18.343 | 6695.173 | 84.772 | 0.870 | 52.670 |
|  | OPL110 10-12 | 185 | 497.597 | 42.510 | 27.393 | 499.410 | 18.778 | 6853.959 | 143.778 | 0.8 | 0.370 |
|  | OPL110 1-10 | 185 | 112.534 | 42.820 | 6.326 | 120.405 | 19.604 | 7155.526 | 33.203 | 0.840 | 21.366 |
| 11-110kV | OPL110 8-11 | 185 | 389.164 | 34.356 | 21.410 | 390.678 | 18.795 | 6860.238 | 112.371 | 0.860 | 70.629 |
|  | OPL110 11-F | 185 | 475.808 | 49.495 | 26.216 | 478.375 | 18.795 | 6860.200 | 137.597 | 0.860 | 86.485 |
| $12-110 \mathrm{kV}$ | OPL110 9-12 | 185 | 500.096 | 40.152 | 27.538 | 501.705 | 18.766 | 6849.408 | 144.535 | 0.860 | 90.845 |
|  | OPL110 10-12 | 185 | 500.096 | 40.152 | 27.538 | 501.705 | 18.7 | 6849.408 | 144. | 0.860 | 90.8 |

It must be mentioned that the analysis, respectively the EUF computation values corresponding to the power transformers that equip the 110 $\mathrm{kV} / \mathrm{MT}$ step-down stations for the electric energy repartition system from the N E area of our country, on the most loaded working day from the cold winter regime of the year 2013 (Wednesday, January $16^{\text {th }}$ ), were presented in detail in a scientific paper published in the previous issue of this Bulletin (Georgescu et al., 2013).

## 6. Conclusions

A rational operating of an electric energy repartition and distribution public system is conditioned especially, by whole system capacity and its element from all voltage levels ( $110 \mathrm{kV}, 20 \mathrm{kV}$ and 0.4 kV ), to allow both power and energy losses minimization and the improvement of power quality delivered to consumers in order to minimize the damages caused to them by the inadequate quality of electric energy.

Regarding the policy concerning the power quality supplied, power and energy losses minimization, power transmission yield and the related management methods; they represent priorities for each territorial electric energy distribution and supply company. The above-mentioned priorities must be harmonized with the general company development strategy, with Quality Environment - Health and Occupational Safety integrated management system.

Following the performed study within the paper, according to the present specifications from our country, for an extended repartition public system, consisting of the electric energy reparation network with nominal voltage of 110 kV (168 repartition power lines) and the step-down stations of $110 \mathrm{kV} / \mathrm{MV}$ ( 35 substations equipped with a total number of 52 power transformers), belonging to the distribution operator from the N-E area of our country, the EUF values are determined for each network power line and are synthetically presented in Fig. 2, in graphical form. The EUF values for the 110 kV repartition power lines correspond to the most loaded day (Wednesday,

January $16^{\text {th }}, 2013$ ), from the cold winter season.
Based on detailed results regarding the EUF values of 110 kV power lines from analysed repartition system, summarized in Table 4 and Fig. 2, the following conclusions can be drawn:
$1^{\circ}$ An EUF value equal to $100 \%$ shows that the considered load transited through the power line is approximately equal with the economical load, $I_{M \text { pec }}$, respectively, $S_{M \text { pec }}$. In this case, EUF $\approx 100 \%$ indicates the fact that under actual steady state the operation of respective power line leads to a minimum of the power and active energy losses, minimum total updated expenses (costs), as well as reduced specific operation expenses, etc.


Fig. 2 - The EUF values at various loading levels of the 110 kV repartition power lines.
$2^{\circ}$ Regarding the cases when EUF $>100 \%$, they indicate that a bigger load than the economical load, $I_{M \text { pec }}$, respectively $S_{M \text { pec }}$ through the power line is transited. In these cases, both the cost of the power and active energy losses and the total updated expenses, under actual operation conditions, have bigger values than their economic value corresponding to an EUF $=100 \%$. Taking into account that the economic limits and, in addition, the thermal restrictions in long and short term duration, all of them can lead to less extended areas. Also, the previously mentioned aspects must be checked carefully, in the situation of the intensive use of the 110 kV repartition power lines.
$3^{\circ}$ For the 110 kV power lines with EUF smaller than $100 \%$, it results a smaller load than the economical load of the respective line was sized, that is the economical load corresponding to the indicator EUF $=100 \%$. Therefore, both the cost of longitudinal losses through thermal effect and the total updated expenses are smaller than their economic value, about 1.5 times, in the case of an indicator EUF of $60 \%$ and an increase of more than three times if the EUF value is under $30 \%$, respectively.

In the case of the 110 kV power lines with EUF < $60 \%$, the practical variants or methods for increasing this indicator in current operation must be
determined. For example, the EUF value can be increased through the redistribution of the consumers supplied with electric energy through these power lines, the finding of other sections points, etc., in order to attain the proposed aim.

## REFERENCES

Buhuş P., Comănescu Gh., PE 135/91 - Instrucțiuni privind determinarea secțiunii economice a conductoarelor in instalațiile electrice de distribuție de 1-110 kV. RENEL, Bucureşti, 1991.
Buhuş P., Comănescu Gh., O.RE-1 194/93 - Instrucțiuni privind determinarea gradului de utilizare economică la rețelele de transport şi distribuție a energiei electrice. RENEL, Bucureşti, 1993.
Eremia M. et al., Electric Power Systems, Electric Networks. Edit. Academiei, Bucureşti, 2006.
Georgescu Gh., Neagu B., Proiectarea şi exploatarea asistată de calculator a sistemelor publice de repartiție şi distribuție a energiei electrice. Vol. 1, partea I-a şi a II-a, Edit. Fund. Acad. AXIS, Iaşi, 2010-2011.
Georgescu Gh., Neagu B., Pavelescu E., The Economical Utilization Factor Analysis of the Power Transformer from Electric Energy Repartition Systems. Bul. Inst. Politehnic, Iaşi, LIX (LVIII), 1, s. Electrot., Energ., Electron., 119-132 (2013).
Georgescu Gh., Neagu B., Proiectarea şi exploatarea asistată de calculator a sistemelor publice de repartitie şi distribuție a energiei electrice. Vol. 2, Edit. PIM, Iaşi, 2012.
Georgescu Gh., Sisteme de distribuție a energiei electrice. Vol. 1 şi 2, Edit. Politehnium, Iaşi, 2007, 2009.
Ionescu G.-T., Pop O., Ingineria sistemelor de distribuție a energiei electrice. Edit. Tehnică, Bucureşti, 1998.
Poeată Al., Georgescu Gh., Conducerea automată a rețelelor electrice de distribuție. Rev. ENERG, 3, Bucureşti, 1987.
** *PE 132/2003 - Normativ de proiectare a rețelelor electrice de distribuție publică. S.C. ELECTRICA S.A., Bucureşti, 2003.

## ANALIZA GRADULUI DE UTILIZARE ECONOMICĂ A LINIILOR ELECTRICE DE 110 kV DIN SISTEMELE DE REPARTIȚIE A ENERGIEI ELECTRICE

## (Rezumat)

O funcționare rațională şi, în acelaşi timp, eficientă din punct de vedere tehnico-economic a unor sisteme de repartiție şi distribuție a energiei electrice este condiționată de capacitatea acestora de a permite creşterea randamentului de tranzit al energiei electrice, minimizarea pierderilor de putere şi a celor de energie activă, îmbunătățirea calităţii energiei electrice livrate consumatorilor, reducerea daunelor datorate calității necorespunzătoare a energiei electrice etc. Având în vedere aceste
aspecte, în cadrul lucrării s-a analizat gradul de utilizare economică (GUT) a liniilor electrice de 110 kV din zona de N-E a țării noastre, la nivelul celei mai încărcate zile lucrătoare din regimul rece de iarnă. Pe baza rezultatelor furnizate de o astfel de analiză, pot fi selectate elementele sistemului de repartiție a energiei electrice, respectiv liniile electrice de repartiție de 110 kV , ce urmează a fi supuse unor analize mai atente şi mai aprofundate, în vederea creşterii posibilităților de care dispune sistemul de repartiție considerat, pentru atingerea dezideratelor din punct de vedere tehnico-economic, deziderate urmărite de fiecare societate teritorială de repartiție şi distribuție a energiei electrice.


[^0]:    *Corresponding author: e-mail: georgescu@ee.tuiasi.ro

