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Abstract. Using a new VLSI algorithm for 2-D discrete sine transform 
(DST) an efficient VLSI architecture with appealing topological features and 
high performances can be obtained. The new algorithm has a modular and 
regular computational structure and  can be computed in parallel thus resulting a 
high throughput VLSI implementation. The proposed algorithm can be mapped 
into two linear systolic arrays having a high computing speed and low I/O cost 
with a small number of I/O channels placed at the two ends of the linear array. 
By combining two such linear systolic arrays we can obtain an efficient VLSI 
architecture for 2-D DST. The architecture that can be obtained has a highly 
regular and modular structure and local connections specific to the systolic array 
architectural paradigm. 

 

Key words: discrete sine transform; systolic array; VLSI algorithm; VLSI 
architecture. 

 
 

1. Introduction 
 

The discrete cosine transform (DCT) and discrete sine transform (DST) 
(Ahmed et al., 1974; Jain, 1976, 1989) are important elements in some digital 
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signal processing applications. As is well known they are good approximations 
to the statistically-optimal Karhunen-Loeve transform (Jain, 1976, 1989). They 
can be also used in speech and image transform coding (Jain, 1989; Zhang et 
al., 2007), DCT based subband decomposition in speech and image 
compression (Chen, 2007), or video transcoding (Fung & Siu, 2006). Also there 
are some other important applications as: block filtering (Martucci & 
R.Mersereau, 1993), feature extraction (Jadhav & Holambe, 2008), digital 
signal interpolation (Wang et al., 1993), image resizing (Park & Park, 2006), 
transform-adaptive filtering (Pei & Tseng, 1996; Mayyas, 2005) and filter banks 
(Bergen, 2008). 

It is well known that for high correlation images DCT yields better 
results and for low correlation ones DST yields lower bit rates. The DCT and 
DST represent a good approximation of the statistically optimal Karhunen-
Loeve transform. 

The transform length used in transform coding is 8 or 16. But we can 
reduce blocks artifacts using a prime transform length of 11 or 17 and an 
overlapping technique. In some applications a prime factor is a more suitable 
transform length than a power of two (Tatsaki et al., 1995) as it can be used in 
applications where the transform length is a composite number were the factors 
are mutually prime. Thus, there are in the literature several prime factor 
algorithms for 1-D DST (Chiper et al., 2002). Also, it is possible to combine 
prime-factor algorithms  for an efficient computation or implementation of the 
1-D DST transform for composite-lengths (Kar & Rao, 1994). In this paper we 
propose a new VLSI algorithm for 2-D DST that has a prime factor length. 

As is well known 2-D DST is an computational intensive algorithm. 
Thus it is necessary to design application specific hardware that can speed up 
the execution of this transform or to reformulate in an appropriate manner 
existing algorithms for 2-D DST. In reformulation of the existing algorithm it is 
necessary to take into consideration the fact that data movement and transfer 
play a key role in obtaining an efficient VLSI implementation. In the literature 
there are cycle convolution and circular correlation algorithms that have 
remarkable advantages over other ones due to its efficient input/output 
operations and data transfer. These computational structures can be efficiently 
implemented in VLSI using distributed arithmetic (White, 1989) or systolic 
arrays (Kung, 1982). 

The above mentioned advantages of the cycle convolution can be 
extended to other structures as for example skew-cycle and pseudo-cycle 
convolutions. 

In this paper we propose a new systolic array algorithm for 2-D DST 
using some regular and modular computational structures. These structures can 
be computed in parallel resulting thus a high throughput VLSI implementation. 
We have used a new restructuring method of the 2-D DST into such regular 
structures. The proposed algorithm is appropriated for a memory-based 
implementation as will be discussed in Section 3. All the advantages of a cycle 



Bul. Inst. Polit. Iaşi, t. LIX (LVIII), f. 3, 2013                                        31                                         
 

convolution based implementation as regularity, modularity, low I/O cost and a 
reduced data management scheme can be obtained with the proposed 
computational structures.  

The rest of the paper is organized as follows: in Section 2 a low 
complexity formulation is presented for the computation of the 2-D DST 
transform with an example for a 2-D DST of length N = 11. In Section 3 we 
discuss some details about a VLSI implementation of the proposed algorithm 
using the systolic array architectural paradigm. Conclusions are presented in 
Section 4. 

2. Systolic Algorithm for 2-D DST  

The 2-D DST for a N × N pixel block can be defined as follows: 
 

1 1

0 0
( , ) ( , )sin[(2 1) ]sin[(2 1) ]

N N

i j
Y k l x i j i k j l 

 

 

   ,                 (1)                                                        

   
where 

N2


                                                     (2) 

 
and  x(i,j), (i, j = 0,1,…,N – 1),  is  the  pixel  of  an  image   with   Y(k,l),  (k,l =  
= 1, …, N), the transform coefficient. 

To simplify our presentation, we have dropped the constant coefficient 
from the eq. (1) that represents the definition of 2-D DST. We will add at the 
end of the VLSI array a multiplier to scale the output sequence with this 
constant. 

In the literature there are presented several 2-D VLSI architectures for 
DST. Most of them use the row-column decomposition method. Some of them 
are using a direct method to compute forward or inverse 2-D DCT or DST. 

We can express (1) in a matrix form as 
 

      ,T
N N N Nx S X S                                         (3) 

 
where [SN] is defined as 

 

  ,

1,    for  0,
sin[(2 1) ],   otherwise.N i j

i
S

i j


  
                      (4) 

 
To compute (3) we have to compute first 
  

    TN N NY X S ,                                             (5) 
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along the rows of the input [XN]. We can transpose the relation (5) to obtain 
 

    T T
N N NY S X .                                        (6) 

 
To illustrate our approach we will consider a 2-D DST transform of 

length N = 11. 
We can write (6) as follows: 
 

(1,1) (1, 2 ) (1, )
(2,1) (2, 2 ) (2, )

( ,1) ( , 2 ) ( , )

s in (1 ) s in (3 ) s in (5 ) s in (7 ) sin (9 ) sin (11 ) sin (13 ) sin (15 ) sin (17 ) s in (19 ) s in (21 )
s in (2 ) s in (6 ) s in (10 ) s in (14 ) s in (18 ) sin (

y y y N
y y y N

y N y N y N N
          
    

 
 
  
 
 
 

=




   


22 ) sin (26 ) sin (30 ) sin (34 ) s in (38 ) s in (42 )
s in (3 ) s in (9 ) s in (15 ) s in (21 ) s in (27 ) sin (33 ) sin (39 ) sin (45 ) sin (51 ) s in (57 ) s in (63 )
s in (4 ) sin (12 ) s in (20 ) s in (28 ) s in (36 ) sin (44 ) sin (52 ) sin (60 ) s in (68

     
          
         ) s in (76 ) s in (84 )

s in (5 ) sin (15 ) s in (25 ) s in (35 ) s in (45 ) sin (55 ) sin (65 ) sin (75 ) s in (85 ) s in (95 ) s in (105 )
s in (6 ) sin (18 ) s in (30 ) s in (42 ) s in (54 ) sin (66 ) sin (78 ) sin (90 ) s in (102 ) s in (114 ) s in (126 )
s in (7

 
          
          

) s in (21 ) s in (35 ) s in (49 ) s in (63 ) sin (77 ) sin (91 ) s in (105 ) s in (119 ) s in (133 ) s in (147 )
s in (8 ) sin (24 ) s in (40 ) s in (56 ) s in (72 ) sin (88 ) s in (104 ) s in (120 ) s in (136 ) s in (152 ) s in (168 )
s in (9 ) sin (27 ) s in (45

          
          
   ) s in (63 ) s in (81 ) sin (99 ) s in (117 ) s in (135 ) s in (153 ) s in (171 ) s in (189 )

sin (10 ) s in (30 ) s in (50 ) s in (70 ) s in (90 ) s in (1 10 ) s in (130 ) s in (150 ) s in (170 ) s in (190 ) s in (2 10 )
sin (11 ) s in (33 ) s in (55 ) s in (77 ) s in (

       
          
    99 ) s in (121 ) s in (143 ) s in (165 ) s in (187 ) s in (2 09 ) s in (231 )

x (1 ,0 ) x (2 ,0 ) x (11 ,0 )
x (1 ,1 ) x (2 ,1 ) x (11 ,1 )

.

x (1 ,10 ) x (2 ,10 ) x (11 ,10 )

      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

×

×




   


(7) 

 
We can compute a row from eq. (7) as follows: 
 

(1)
(2 )

(11)

s in (1 ) sin (3 ) s in (5 ) sin (7 ) s in (9 ) s in (11 ) s in(13 ) s in (15 ) sin (17 ) s in (19 ) sin (21 )
s in (2 ) sin (6 ) sin (10 ) s in (14 ) sin (18 ) s in (22 ) s in(26 ) s in (30 ) sin (34 ) s in (38 ) sin (42 )
s in

Y
Y

Y
          
          

 
 
  
 
 
 





(3 ) sin (9 ) sin (15 ) s in (21 ) s in (27 ) s in (33 ) s in(39 ) s in (45 ) sin (51 ) s in (57 ) sin (63 )
s in (4 ) s in (12 ) sin (20 ) s in (28 ) sin (36 ) s in (44 ) s in(52 ) s in (60 ) sin (68 ) s in (76 ) sin (84 )
s in (5 ) s in (15 ) sin (25 ) s in (35

          
          
    ) sin (45 ) s in (55 ) s in (65 ) s in (75 ) sin (85 ) s in (95 ) s in (105 )

s in (6 ) s in (18 ) sin (30 ) s in (42 ) sin (54 ) s in (66 ) s in(78 ) s in (90 ) s in (102 ) sin (114 ) s in (126 )
s in (7 ) s in (21 ) sin (35 ) s in (49 ) sin (63 ) s in (77 ) s in(9

      
          
      1 ) sin (105 ) s in (119 ) sin (133 ) s in (147 )

s in (8 ) s in (24 ) sin (40 ) s in (56 ) sin (72 ) s in (88 ) s in (104 ) sin (120 ) s in (136 ) sin (152 ) s in (168 )
s in (9 ) s in (27 ) sin (45 ) s in (63 ) sin (81 ) s in (99 ) s in (117 ) sin (135 ) s in (

    
          
        153 ) sin (171 ) s in (189 )

sin (10 ) s in (30 ) sin (50 ) s in (70 ) s in (90 ) s in(1 10 ) s in (130 ) sin (150 ) s in (170 ) sin (190 ) s in (2 10 )
sin (11 ) s in (33 ) sin (55 ) s in (77 ) s in (99 ) s in(1 21 ) s in (143 ) sin (165 ) s in (187 ) sin (209

  
          
         ) s in (231 )

(0 )
(1)

,

(10 )

x
x

x

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 



(8) 

 
where ( ),  ( 0,1,..., 1)x i i N  , is a real input sequence.  

We will reformulate relation (8) as a parallel decomposition based on a 
skew-cycle and pseudo-cycle convolution forms using a single new input 
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restructuring sequence as opposed to those proposed by White, (1989), where 
we have used two such auxiliary input sequences. Further, we’ll use the 
properties of DST kernel and the properties of the Galois Field of indexes to 
appropriately permute the auxiliary input and output sequences. 

To illustrate our approach, we will consider an example with the length 
N = 11 and the primitive root g = 2. 

 Thus,  we  will introduce the following auxiliary input sequence:   
{xa(i): i = 0,1,…,N – 1}. It can be recursively computed as follows: 

 
( 1) ( 1),ax N x N                                           (9) 

 
( ) ( 1) ( ) ( 1)i

a ax i x i x i    ,                                  (10) 
 

for 0,...,2 Ni . 
Using this restructuring input sequence we can reformulate (8) as 

follows 
 

(1) sin( ) (1)cos( )
(2) sin(2 ) (2)cos
(3) sin(3 )
(4) sin(4 )
(5) sin(5 )

(0) 2
(6) sin(6 )
(7) sin(7 )
(8) sin(8 )
(9) sin(9 )
(10) sin(10 )

a

Y T
Y T
Y
Y
Y

x
Y
Y
Y
Y
Y

 










   
   
   
   
   
   
   

    
   
   
   
   
   
   
      

(2 )
(3)cos(3 )
(4)cos(4 )
(5)cos(5 )

,
(6)cos(6 )
(7)cos(7 )
(8)cos(8 )
(9)cos(9 )

(10)cos(10 )

T
T
T
T
T
T
T

T











 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

                  (11) 

 
and 
  

   (0) (0)aY x .    (12) 
 
The new auxiliary output sequence, {T(k): k = 1,2,…,N – 1}, can be 

computed in parallel as two pseudo-cycle convolutions, if the transform length, 
N, is a prime number, as following: 
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[ (2) (9)] [ (4) (7)] [ (8) (3)] [ (5) (6)] [ (10) (1)](2)
[ (10) (1)] [ (2) (9)] [ (4) (7)] [ (8) (3)] [ (5) (6)](4)
[ (5) (6)] [ (10) ((8)

(6)
(10)

a a a a a a a a a a

a a a a a a a a a a

a a a a

x x x x x x x x x xT
x x x x x x x x x xT
x x x xT

T
T

        
         
    
 
 
  

1)] [ (2) (9)] [ (4) (7)] [ (8) (3)]
[ (8) (3)] [ (5) (6)] [ (10) (1)] [ (2) (9)] [ (4) (7)]
[ (4) (7)] [ (8) (3)] [ (5) (6)] [ (10) (1)] [ (2) (9)]

a a a a a a

a a a a a a a a a a

a a a a a a a a a a

x x x x x x
x x x x x x x x x x
x x x x x x x x x x

 
 
 
     
         
           

sin (8 )
sin (6 )
sin (10 )
sin ( )
sin (4 )







 
 
 
 
 
 
  

, (13) 

 
[ (2) (9)] [ (4) (7)] [ (8) (3)] [ (5) (6)] [ (10) (1)](9)

[ (10) (1)] [ (2) (9)] [ (4) (7)] [ (8) (3)] [ (5) (6)](7)
[ (5) (6)] [ (10) (1)(3)

(5)
(1)

a a a a a a a a a a

a a a a a a a a a a

a a a a

x x x x x x x x x xT
x x x x x x x x x xT
x x x xT

T
T

        
         
   
 
 
  

sin (8

] [ (2) (9)] [ (4) (7)] [ (8) (3)]
[ (8) (3)] [ (5) (6)] [ (10) (1)] [ (2) (9)] [ (4) (7)]

[ (4) (7)] [ (8) (3)] [ (5) (6)] [ (10) (1)] [ (2) (9)]

a a a a a a

a a a a a a a a a a

a a a a a a a a a a

x x x x x x
x x x x x x x x x x

x x x x x x x x x x

 
 
 
     
         
       

)
sin (6 )
sin (10 )
sin ( )
sin (4 )







 
 
 
 
 
 
  

. (14) 

 
We have used two index mappings, ( )i  and ( )i ,  to realize a partition 

into two groups of the permutation of indexes  1,2,3,4,5,6,7,8,9,10 . They are 
defined as follows: 

 
 ( ) :1 2, 2 4, 3 8,4 6, 5 10i      , 

 ( ) :1 9, 2 7, 3 3,4 5, 5 1i      , 
 
 
The signs of terms in eqs. (13) and (14) are given by the functions 

( , )k i and ( , )k i defined, respectively, as follows: 
 

( , )k i  is defined by the matrix 

0 0 1 1 1
1 0 1 0 0
0 1 1 0 1
0 1 1 1 0
1 1 1 1 1

 
 
 
 
 
 
  

 and 

( , )k i  is defined by the matrix 

1 1 0 1 0
0 1 0 1 0
0 0 0 1 0
1 1 0 0 1
0 0 1 0 0

 
 
 
 
 
 
  

.   

 
 
Eq. (3) can be computed by N N-point DST along the rows of the input 

[XN], obtaining [YN] = [XN] [SN]T, followed by N N-point DSTs along the 
columns of the matrix obtained from the row transformed, [xN] = [SN] [XN].  
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This simple decomposition method reduces the computation complexity 
with a factor of 4. 

 
3. A VLSI Implementation Discussion   

 
Using the algorithm presented in Section 2 we can obtain two linear 

systolic arrays  using a dependence-graph based synthesis procedure. These 
arrays represent the main part of the architecture used for the VLSI 
implementation of the derived algorithm. The obtained processing elements 
consists of a multiplier, an adder and some multiplexers used to manage the 
differences in sign in eqs. (13) and (14), respectively. Note that each multiplier 
realizes a multiplication in eqs. (13) and (14) with a constant resulting to a 
further improvement, that consists in replacing of multipliers with  look-up 
tables LUTs residing in small ROMs. We can obtain a further reduction of the 
hardware complexity using an appropriate hardware sharing method. 

One important feature of the proposed solution is its low I/O cost, an 
aspect that could be very useful in designing systolic arrays where the so called 
I/O bottle-neck can seriously limit the usefulness of this concept. The tag-
control mechanism can be used to place all I/O channels at the two extreme 
ends of each systolic array and to control the internal registers using only I/O 
channels placed at the two ends of the linear systolic array. 

The pre-processing stage realizes the computation of the auxiliary input 
sequence using eqs. (9) and (10) and also a permutation of the resulting input 
sequence. There is also necessary to reorder the input sequence in order to 
compute eqs. (9) and (10). Each permutation can be obtained using a RAM with 
N words.  

The post-processing stage has the role to reorder the auxiliary output 
sequence  ( ) : 1,2,..., 1T k k N  , in such a way that to put it in a natural order 
and will yield the final output sequence using eq. (11). 

 
 

4. Conclusions   
 
In this paper it is presented a new VLSI algorithm for 2-D DST that 

leads to an efficient VLSI architecture with appealing features for a VLSI 
implementation and high performances.  The proposed algorithm uses some 
modular and regular computational structures that can be computed in parallel 
thus resulting a high throughput VLSI implementation. It can be mapped into 
two linear systolic arrays with a high throughput and low I/O cost and hardware 
complexity.  By combining two such linear systolic arrays we can obtain an 
efficient VLSI architecture for 2-D DST that is highly regular and modular and 
having local connections, being well adapted to the VLSI technology.   
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UN NOU ALGORITM SISTOLIC PENTRU TRANSFORMATA 2-D DST 

 
(Rezumat) 

 
Se prezintă un nou algoritm VLSI pentru transformata 2-D DST care conduce 

la o arhitectură VLSI eficientă având anumite caracteristici atrăgătoare pentru o 
implementare VLSI şi cu performanţe ridicate. Algoritmul propus utilizează nişte 
structuri computaţionale modulare şi regulate care pot fi calculate în paralel conducând 
la un „throughput” ridicat. El poate fi mapat pe două arii sistolice având un 
„throughput” ridicat, o complexitate a operaţiilor de intrare/ieşire scăzută şi o 
complexitate hardware redusă. Prin combinarea celor două arii sistolice se poate obţine 
o arhitectură VLSI eficientă pentru transformata 2-D DST care are un caracter modular 
şi regulat, cu conexiuni locale, caracteristică specifică ariilor sistolice. 



 


