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Abstract. The brain–computer interfaces (BCI) provide a new way of 
communication between humans and computers by using brain activity as input 
signals. The electroencephalography (EEG) is the most used method for brain 
activity monitoring in BCI systems. The acquired signals from the brain have to 
be proper interpreted through feature extraction and classification. The 
classification was performed using three classifiers: linear discriminant analysis 
(LDA), quadratic discriminant analysis (QDA) and Mahalanobis distance (MD) 
using EEG Motor Movement/Imagery database. The differences between LDA 
and QDA errors are generally small and depend on trails and pairs of electrodes. 

 

Key words: brain–computer interface (BCI); electroencephalogram (EEG); 
event related (de)synchronization (ERD/ERS); movement imagery. 

 
 

1. Introduction 
 

The technology through which human brain communicates with an 
external device without the involvement of peripheral nerves or muscles is 
called Brain–Computer Interface (BCI). The communication is ensured by a 
complex system which reveals and identifies a specific brain activity in order to 
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be associated with a set activation, which after that will be sent to a computer 
for a specific activity. The purpose of a BCI is to allow individuals with severe 
motor disabilities to have effective control over devices such as computers, 
speech synthesizers, assistive appliances and neural prosthesis (Bashashati et al., 
2007).  

A BCI system records brain “waves”, extracts key patterns from signals 
then translates them into commands that are sent to an external device. The 
brain activity produces a variety of phenomena that can be measured with 
adequate sensors. Monitoring methods include electroencephalography (EEG), 
magnetoencephalography (MEG), electrocorticography (ECoC), functional 
magnetic resonance imaging (fMRI) and positron-emission tomography. 
Choosing the method based on the EEG signal is most suitable for the following 
reasons: low cost, which can be used in real-time applications.  

The BCI interface is composed of a data acquisition module, a pre-
processing block for EEG signals, an extraction block, a block for feature 
classification and other one for control (Fig. 1). These systems can be assumed 
as different software modules which are running on a fast PC (Lazăr et al., 
2009).  

 
Fig. 1 – Components of a BCI system. 

 
Various neurological phenomena such as: visual evoked potentials 

(VEP), slow cortical potentials (SCP), steady state visual evoked potentials 
(SSVEP), P300, modulations in sensorimotor rhythms (Mu, Beta, Gamma) are 
exploited by the BCI systems (Nicolas-Alonso & Gomez-Gil, 2012).  

The EEG signal contains a fairly wide range of frequencies. However, 
the relevant frequency range from physiological viewpoint lies between 0.1 Hz 
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and 100 Hz. The most important 6 EEG rhythms characterized by their 
frequency band or their location are: Alpha (8…12 Hz), Beta (13…30 Hz), 
Theta (4…7.5 Hz), Delta (0.1…3.5 Hz), Gamma (over 30 Hz) and Mu, which is 
in the same frequency band as Alpha. Mu wave has a spatial distribution 
essentially confined to the pre-central-post-central region (activity focused over 
motor cortex) (Kachenoura et al., 2007). The rhythms are associated with 
specific activities: Beta is associated with active thinking and attention, Theta 
rhythm is associated with emotional process and Mu is affected by movements 
and movement imagery.  

The Mu rhythm was first reported in the 1950s but has not received the 
kind of attention than other EEG oscillations, most likely because until recently 
it was thought to occur infrequently and only in a small percentage of the 
population. New and more sophisticated techniques, such as independent 
component analysis (ICA), have shown that Mu rhythm are found with scalp 
EEG in most, if not all, healthy adults (Pineda, 2005).   

The oscillations of Mu rhythm are limited to smaller time range between 
0.5…2 s and are localized in sensorimotor cortex in the absence of movement 
(Pfurtscheller & Silva, 1999). 

Sensory stimulation, motor behavior and mental imagery can generate 
modifications in the functional connections of the cortex causing decreasing in 
amplitude called event-related desynchronization (ERD) or increasing in 
amplitude – event related synchronization (ERS) of MU or Beta bands. For 
example: planning, preparation or imagining left or right hand movement 
produces an ERD for a short period of time for Mu or Beta in the right  and in 
the left hemisphere in the cortex, respectively. 

The motor imagery has become the newest trend in BCI research since 
the movement imagery appears to recruit neural mechanism in the brain, which 
are similar or the same to those used to perform actually the same movement 
(Stavrinou et al., 2007). Some BCI systems can describe if the user thinks about 
moving left or right hand or foot. Others BCI systems rely on a certain specific 
movement but more abstract. During training sessions, people can develop their 
own motor imaginary strategy. For example, during the movement of a cursor, 
people can learn which types of motor imagery movements are suitable for BCI 
control by moving it up or down. A prior training can help the subjects to move 
the cursor in a 2- or 3-dimensional space.      

 
2. Methods 

  
The EEG signals have random fluctuations and the analysis based on 

Fourier transform cannot be applied directly. A statistical point of view must be 
adopted. In the time domain the estimate of the autocorrelation function is used. 
Its Fourier transform, the power spectral density (PSD), characterizes the signal 
in frequency domain. PSD is important in the analysis of stationary random 
processes, quantifying the total distribution of power depending on frequency. 
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Classical methods for estimating the spectrum power (non-parametric methods) 
are obtained directly from the signal and make no assumption about how the 
data are generated. They are based on periodogram introduced by Shuster 
(1898) and assume obtaining consistent estimates.  

The estimate of the spectral density of a signal (periodogram),  xxP̂ f , 
for a sequence, x(n), of  length N, is given by  (Proakis & Manolakis, 2007): 
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where X(f) is the discrete Fourier transform for sequence x(n). 

Periodogram is an inconsistent estimate of the actual power spectral 
density. For a finite sequence, the mean value of  fPxx

ˆ  is the Fourier 
transform of the autocorrelation function of the signal x(n) multiplied with a 
triangular window (Bartlett) which leads to a distortion of the power spectrum 
density. Spectrum is influenced by the smoothing and spreading effects 
embedded in Bartlett window, which makes the estimation of the appropriate 
spectrums to be limited. In case of the periodogram, dispersion is not cancelled 
when data with long length are processed (Proakis & Manolakis, 2007).   

Others non-parametric methods are obtained through smoothing 
operations applied directly to periodogram or autocorrelation function. The 
effect is decreasing of the estimate dispersion with the effect of resolution 
reduction. In order to minimize periodogram dispersion, the data sequence can 
be divided into k segments that do not overlap and the periodogram is calculated 
for each segment. The estimate results as the average of the k segments 
(averaged periodogram or Bartlett estimate) is 
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where  fP i
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ˆ  is the estimate of each segment of length M = N/k, given by 
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The averaged periodogram has a smaller dispersion than periodogram. 
Welch method is an improved estimator of the power spectral density 

which is based on periodogram. The method consists of dividing the data into 
segments that overlap, the calculation of modified periodogram for each 
segment (because the data sequence is weighted with other window than 
rectangular one) and then mediating power spectral density estimates. The result 
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is the Welch estimate of the power spectral density;  fPxxW
ˆ  is given by the 

following relantionship: 
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where  fP i
xxM

ˆ  is the modified periodogram calculated for each segment, 
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w(n) is a distinct to rectangular window. Hamming, Hanning or Blackman 
windows may be used (Ifeachor & Jevis, 1993).   

Averaging the modified periodogram leads to a decrease for estimate 
dispersion towards estimate dispersion given by the simple periodogram of the 
entire record. Although the overlap for data segments tends to increase the 
redundancy this effect is reduced by using a non-rectangular window which 
reduce the weight given to the samples situated at the end of the segments                
(samples that overlap). By overlaping the sequences, it results longer segments 
then in the case of averaged periodogram, which can decrease the dispersion. If 
the same number of segments is maintained, due to overlapping, longer 
segments are obtained which leads to resolution increase. In conclusion, a 
compromise between decreasing dispersion and resolution must be realized. In 
order to get improved estimates towards periodogram, especially when signal to 
noise ratio is small, we must find the most suitable parameters for Welch 
method.  

The linear discriminant analysis (LDA, also known as Fisher’s LDA), is 
a classification method originally developed in 1936 by R.A. Fisher. It is 
simple, mathematically robust and often produces models whose accuracy is as 
good as more complex methods. LDA is based upon the concept of searching 
for a linear combination of variables (predictors) that best separates two classes 
(targets). The aim of LDA is to use hyperplanes to separate the data 
representing the different classes (Lotte et al., 2007). 

One way of assessing the effectiveness of the discrimination is to 
calculate the Mahalanobis distance (MD) between two groups. MD is simple 
and robust and has shown good performance in BCI research.  The MD 
measures the dissimilarity between feature vectors from different classes and 
can be used to remove outliners. A distance greater than 3 means that two 
averages differ by more than 3 standard deviations. It means that the overlap 
(probability of misclassification) is quite small. 

Another standard approach for classification problems is quadratic 
discriminant analysis (QDA), which models the likelihood of each class as a 
Gaussian distribution, then uses the posterior distributions to estimate the class 
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for a given test point. The estimates for QDA are similar to those for LDA, 
except that separate covariance matrices must be estimated for each class 
(Hastie et al., 2009). 

 
3. Dataset and Results  

 
The dataset we used is EEG Motor Movement/ Imagery Dataset 

(eegmmidb) with 109 subjects and was downloaded from  
http://www.physionet.org (Mark et al., 2014). Subjects had performed different 
motor/imagery tasks. The EEGs were recorded from 64 electrodes in the 
extended international 10-20 system (excluding electrodes Nz, F9, F10, FT9, 
FT10, A1, A2, TP9, TP10, P9, and P10). For testing the method we have taken 
into consideration the first 30 subjects and only the channels Fc1, Fc2, Fc3, Fc4, 
C1, C2, C3, C4, Cp1, Cp2, Cp3, Cp4, as shown in Fig. 2.   

  

 
Fig. 2 – Depiction of electrode placement in the standard 10-20 System. 

 
Each subject performed 14 experimental runs: two one-minute baseline 

runs (one with eyes open, one with eyes closed) and three two-minute runs of 
each of the four following tasks: open and close left or right fist, imagine 
opening and closing left or right fist, open and close both fists or both feets, 
imagine opening and closing both fists or both feets. Only two tasks were 
considered: movement of the fist and fist movement imagery. 

Each signal was sampled at 160 Hz and annotated with the following 
codes (T0, T1, T2): T0 corresponding to the resting period, T1 corresponding to 
the onset of motion (real or imagined) of the left fist and T2 corresponds to 
onset of motion (real or imagined) of the right fist. There are available three 
data sets for wrist movement (trials 3, 7, 11) and three imaginary data sets (trials 
4, 8, 12). 
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 Signals are filtered with a band pass filter 8...12 Hz corresponding to 
the Mu rhythm range of frequency. We have selected portions from the signals 
(2 s after stimulus appearance) according to the notation for each mental task 
(T2, T1), extracting the data for right or left wrist real motion. Similar for the 
relax period (T0) were extracted sequences of 2 s following right or left wrist 
movement, while the subject is relaxed. Signals were not filtered by artefacts. 

In order to assess the existence of ERD (desynchronization) during real 
motion performing the power spectral density (PSD) was calculated for all 
useful channels and for all trails related with right or left fist real motion. The 
average for these trails was calculated. The MATLAB used function is pwelch 
with a Hanning window, by specifying the averaging each trial with a factor 
explicitly (Schmid, 2012). Window length is calculated as the ratio between the 
length trial and this factor.  The  function returns frequency components up to 
80 Hz (Fs/2), but we have extracted only those components with range of 
frequency 8...12 Hz. The same procedure was applied for calculating the power 
spectral density for the relaxation period following right or left wrist opening.   

A quantity is calculated, noted as ERD, to assess desynchroni-
zation/synchronization which appears on pair of electrodes on the left 
hemisphere and right hemisphere in right/left wrist real movement, 

REST MOVEMENT

REST

PSD PSDERD
PSD

.
     (6)          

Feature vector was formed from each pair of electrodes on the left/right 
hemisphere in the following way: ERD calculated for wrist right movement for 
the signal recorded from left hemisphere (FC1, FC3, C1, C3, CP1 or CP3), 
ERD calculated for wrist left  movement for the paired electrode  from left 
hemisphere (FC2, FC4, C2, C4, CP2 or CP4), ERD calculated for wrist left 
movement for the electrode from left hemisphere, ERD calculated for wrist left 
movement for the electrode from right hemisphere.  For the classification step 
we have used LDA, QDA and MD for all six pairs of electrodes. The steps 
described above were followed by the trials corresponding to right/left wrist 
movement imagery. The classification error obtained for the test set was 
followed for movement/ imagery of movement, pair of electrodes and classifier, 
as shown in Table 1. 

 

Table 1  
Test Error Rate Performance for Classifiers and Pair of Electrodes 

Task Technique 
Pair of electrodes 

FC3-FC4 FC1-FC2 C3-C4 C1-C2 CP3-CP4 CP1-CP2 

Movement 
LDA 11.98 12.35 11.73 13.89 15.68 13.83 
QDA   9.26   8.89   8.40 10.25 10.31   9.94 
MD 12.28 11.73 12.35 14.26 14.01 14.81 

Movement 
imagery 

LDA 14.32 14.57 16.54 15.68 15.93 15.86 
QDA 10.86 11.05 12.78 11.54 11.54 12.84 
MD 15.68 15.31 18.02 14.94 15.86 15.99 
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The smaller error (8.40) was obtained on electrodes C3/C4 for 
movement with QDA classifier and for movement imagery the smaller error 
(10.86) was attained on pair FC3/FC4 for the same classifier.  The higher error 
on movement task was achieved on CP1/CP2 for MD classifier and for 
movement imagery task on pair C3/C4 also for MD classifier.   

The overall errors obtained after applying the quadratic classifier are 
better than those observed for linear classifier and MD, but the differences 
between LDA and QDA errors are generally small.  
 

Table 2  
Errors for Subject 5 for all Tasks, Trials, Classifiers and Pair of Electrodes 
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3 
LDA   0.00 33.33   0.00 33.33   0.00 33.33 
QDA   0.00 33.33   0.00 33.33   0.00 33.33 
MD   0.00 27.78 16.67 33.33 27.78 33.33 

7 
LDA   5.56   0.00   0.00   0.00   0.00   0.00 
QDA   0.00   0.00   0.00   0.00   0.00   0.00 
MD   0,00   0.00   0.00   5.56   0.00   0.00 

11 
LDA   5.56 11.11 38.89 27.78 27.78 55.56 
QDA 11.11 11.11 38.89 22.22 22.22 50.00 
MD 33.33 11.11 38.89 27.78 27.78 55.56 

M
ov

em
en

t 
im

ag
er

y 

4 
LDA   0.00 50.00   0.00 61.11   0.00   0.00 
QDA   0.00 50.00   0.00 55.56   0.00   0.00 
MD   0.00 61.11   0.00 50.00   0.00   5.56 

8 
LDA   0.00   5.56   0.00   5.56   0.00   0.00 
QDA   0.00   5.56   0.00   0.00   0.00   0.00 
MD   0.00   5.56   0.00   5.56   0.00   0.00 

12 
LDA   0.00   0.00   0.00   0.00   0.00   0.00 
QDA   0.00   0.00   0.00   0.00   0.00   0.00 
MD   0.00   0.00   0.00   0.00   0.00   0.00 

 
On subject 21 we have obtained high errors (> 50%) for all pairs of 

electrodes for movement imagery opposed to movement task errors was less 
than 1% on Fc3/FC4, FC1/FC2, C3/C4 for all classifiers. On pair CP3/CP4 we 
have obtained errors smaller than 1% for all movement imagery trials and for all 
classifiers on subject 3. For movement task, for the same subject on all pairs of 
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electrodes errors were higher. The exception is trial 7. On pairs C1/C2, 
CP3/CP4, CP1/CP2  the errors are small. 

Another subject with acceptable errors (< 1%) for movement and for 
movement imagery was 27. Depending on classifier, the errors were in the 
range 33%...39% for trial 7. 

15 subjects performed well on movement task, 10 subjects had 
satisfactory results for movement imagery and at 5 subjects are obtained good 
errors for movement and also for imagined task. An example is depicted in 
Table 2. 

For real motion the errors were in range between 0…55, and for 
movement imagery between 0…61. The higher errors obtained in trial 4 can be 
explained of an imperfect contact of some of the electrodes on the scalp because 
on the other trials the subject performed well the demanded task. Another 
possible explanation could be that the subject did not develop the Mu rhythm.     
 In other works (Sleight et. al., 2009) the classification result vary 
significantly from one patient to another and some inaccuracies in the Physionet 
data were found. 

4. Conclusions 

 Using EEG Motor Movement/Imagery databaset, power spectral 
density and Welch method we have assess the existence of ERD. For the 
classification we have used LDA, QDA and MD for all six pairs of electrodes.   
The results show reasonable classification accuracies, which are consistent 
across most subjects, for movement and movement imagery tasks, all trials and 
all pairs of electrodes. Classification is slightly more successful for real 
movement then for imagined movements. 

It is important to note that results differ significantly across patients. 
Movement and imagery movement are challenging and a mental effort is 
required. Maybe some subjects could not execute the task requested, especially 
for imagined movement because they do not have imaginative skills or their 
level of concentration was below average. 

The differences are generally small because both LDA and QDA 
perform well on an amazingly large and diverse set of classification tasks. 

Future work involves testing all subjects from the database and applying 
statistical tests. 
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DETECŢIA ŞI CLASIFICAREA RITMULUI MU FOLOSIND BAZA DE DATE 
„EEG MOTOR MOVEMENT/IMAGERY” 

 
(Rezumat) 

 
Interfaţa creier–calculator (Brain–Computer Interface – BCI) oferă un nou mod 

de comunicare între oameni şi computere, folosind ca semnal de intrare activitatea 
cerebrală. Electroencefalografia (EEG) este metoda cea mai utilizată pentru 
monitorizarea activităţii creierului folosită de sistemele BCI. Semnalele achiziţionate 
trebuie să fie interpretate corect prin extragerea trăsăturilor şi clasificare. Clasificarea a 
fost realizată prin 3 clasificatori: discriminant liniar (LDA), discriminant  pătratic 
(QDA) şi distanţa Mahalanobis (MD). 


