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Abstract. In this paper we investigate the reconstruction of compressed 
sensed ECG signals using patient specific dictionaries and several types of 
projection matrices (matrices with random i.i.d. elements sampled from the 
Gaussian or Bernoulli distributions, and matrices optimized for the particular 
dictionary used in reconstruction by means of appropriate algorithms). We 
analysed two ways of building dictionaries used in the reconstruction phase, i.e., 
with and without centered R-wave. The best results were obtained with 
optimized projection matrix with respect to the dictionary and patient specific 
dictionary with centered R-wave. 
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1. Introduction 
 

Shannon’s sampling theory represents, in the case of many signal 
classes, a too severe limitation. It can be overcome by using the Compressed 
Sensing Theory (compressive sensing, compressive sampling and sparse 
sampling) thoroughly investigated in the last several years by prestigious 
researchers such as D. Donoho, (2006, 2004), E. Candès et al., (2008), M. Elad, 
(2007), etc. Compressed sensing (CS) is a rather new method which draws the 
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attention of many researchers and is considered to have an enormous potential, 
with multiple implications and applications, in all fields of exact sciences. 
Specifically, CS is a compressing technique, essentially based on finding sparse 
solutions to underdetermined linear systems. In the signal processing domain, 
CS is the process of acquiring and reconstructing a signal that is supposed to be 
sparse or compressible from a reduced set of projection on a set of random 
signals. 

In this paper we present a new ECG compression method based on the 
CS concept that requires an ECG signal preprocessing to delimitate the ECG 
signal in cardiac cycles (heart beat or cardiac patterns) to be compressed. The 
proposed method speculates the ECG signal specific features of each patient. 
Moreover three projection matrices needed for compression are analysed: a 
projection matrix built taking into account the dictionary that will be used in the 
reconstruction phase (decompression), a Bernoulli matrix type, and a Gaussian 
random matrix. 

The paper begins with a section in which a brief review of CS is made, 
then the method is discussed and finally experimental data and conclusions are 
presented. 

 
2. Background on Compressed Sensing (CS) 

 
CS studies the possibility of reconstructing a signal, x, from a few linear 

projections, also called measurements, given the a priori information that the 
signal, x, is sparse or compressible in some known basis, Ψ. The vectors on 
which x is projected onto are arranged as the rows of an n × N projection matrix 
 , n < N, where N is the size of x and n – the number of measurements. 
Denoting the measurement vector as y, the acquisition process can be described 
as  

 
,y x                                       (1) 

 

0
argmin subject  to ,

l
ˆ y


                   (2) 

 
ˆx̂ .                                         (3) 

 

The system of eqs. (1) is obviously undetermined. Under certain 
assumptions on Φ and Ψ, however, the original expansion vector, γ, can be 
reconstructed as the unique solution to the optimization problem (2); the signal 
is then reconstructed with (3). Note that (2) amounts to finding the sparsest 
decomposition of the measurement vector, y, in the dictionary  . 
Unfortunately, (2) is combinatorial and unstable when considering noise or 
approximately sparse signals. Two directions have emerged to circumvent these 
problems: (i) pursuit and thresholding algorithms seek a sub-optimal solution of 
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(2) and (ii) the Basis Pursuit algorithm (Chen, 1998) relaxes the 0l  

minimization to 1l , solving the convex optimization problem 
  

1
argmin subject  to ,

l
ˆ y


    

 
              (4) 

instead of the original one. 
In the past few years, the mathematic fundamentals of CS can also be 

found in application in the field of biomedical signals, both at the level of 
processing method (for ECG and EEG type signals), as well as at the level of 
implementation in practical applications, such as compression, transmission and 
reconstruction of the ECG signal using, for instance, a smart-phone 
(Mamaghanian et al., 2011; Polania et al., 2011; Zhang et al., 2013). 

  
3. Method 

 
Starting from the observations underlined by Fira et al., (2010), that 

using a standard wavelet dictionary leads to worse results compared to using 
specific ECG signal dictionaries, we made a further step toward improving the 
compression rate and the reconstruction error by using a specific dictionary for 
each patient.  

In a previous work (Fira et al. 2013) a compression method based on 
patient specific dictionaries and a dictionary made of segments of the first part 
of the patient’s ECG signal was presented. Note that in that paper, the dictionary 
atoms are ECG random segments for which the R-wave can occur anywhere 
within the 256 samples or can even be absent. In this way, we speculated the 
ECG signal specific features of each patient without taking into account the 
cyclical pattern of the heart beats. 
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Fig. 1 – Principle of the method. 

 
Indeed, the ECG signal is typically quasi-periodic, being composed of 

cardiac cycles repeating with rather low variability. Based on this observation, 
in some of our previous works (Fira et al., 2010; Fira et al., 2011; Fira et al., 
2012) have proposed compression methods that employ pre-processed ECG 
signals, i.e. segmented in cardiac cycles, rather than directly with the ECG 
recording. 
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In this paper we propose a compression method, shown in Fig. 1, that 
exploits both cyclical heartbeat and patient specific characteristics. The ECG 
signal is pre-processed and converted into cardiac cycles; the first 6 min. from 
the ECG signal is used to build the patient specific dictionary. After these 6 min. 
the dictionary is built and one can pass to the effective ECG compressed 
sensing. 

From the ECG recorded samples that are stored in the processing buffer, 
full cardiac beat cycles are extracted by detecting the maxima of the R-waves, 
followed by segmenting between the midpoints of consecutive RR-intervals. 

 
3.1. Preprocessing Stage – Segmentation and Resampling 

 
For using segments with no R-wave alignment, the extracted segments 

are subsequently resampled to 301 samples. 
When R-wave alignment is desired, each ECG segment is split in two 

parts, one from the beginning of the segment to the location of the R-wave and 
the other one from there to the end, and each part are independently resampled 
to a length of 150 samples. 

In this way, the cardiac beats are resampled to a fixed dimension of 301 
samples, with the R-wave optionally aligned in the center of the segment. 

 
3.2. Projection Matrices 

 
It is known from the literature (Duarte et al., 2005; Baraniuk et al., 

2005) and our previous works (Cleju et al., 2011; Fira et al., 2010) that the 
reconstruction quality of the compressively-sensed signal is influenced by the 
type of matrix used in the compression stage. 

While most CS theory deals with signals which are sparse in 
orthonormal bases, the signals we deal with are sparse in a nonorthogonal basis, 
Ψ, of an overcomplete dictionary. Projecting on a matrix, Φ, with i.i.d. normal 
elements results in a system  1Ay  . However, if Φ is a random matrix, 

1A , will have a higher RIP constant and, therefore, is likely not 
appropriate for reconstruction (Cleju et al., 2011). 

A better alternative is to use a projection matrix defined as 
TA 2 (product of random matrices and the dictionary transposed), resulting 

in an acquisition eq. system  Ty . In our previous experiments (Cleju et 
al., 2011), this results in the best reconstruction errors among the two 
alternatives. The reason is that the coefficients error vectors,  ˆ , are, in this 
case, smaller along the directions of the significant singular vectors of Ψ. 

A third possibility is to use a projection matrix composed only of 0 and 
1 elements that are equally probable, i.e. a symmetrically distributed Bernoulli 
type matrix (P(Φi,j = 1/2)), with a controlled way of generating the entries to 
ensure symmetry (half of the entries of a row are generated with the Bernoulli 
distribution and the other half by inverting the first half) (Fira et al., 2013). 
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3.3. Dictionary Design Stage 

 
This stage consists first of a standard recording of a 6 min. long ECG 

signal with no compression involved. This segment is then segmented into 
cardiac beats, with optional R-wave alignment, and the segments form the 
patient's dictionary. Thus, the dictionary is a matrix of size 301 × 700. This 
method speculates the quasi-periodicity and the particular features of the ECG 
signal of a certain patient. 

After these 6 min. required for constructing the dictionary, one can start 
the procedure of compressively acquiring the ECG signal for the patient. 

 
3.4. The Stage of Reconstruction of the Compressed Cardiac Patterns 

 
The reconstruction of the compressed cardiac patterns is based on using 

the above discussed patient specific dictionary consisting of 700 cardiac patterns 
with or without centered R-wave of the specified class stored as 301 × 700 
matrices. For reconstructing the patterns we use the Basis Pursuit algorithm to 
determine the coefficients. 

 
3.5. Validation of the Compression Method 

 
To validate the compression we evaluated the distortion between the 

original and the reconstructed signals by means of the percentage root-mean-
square difference (PRD) and its normalized version, PRDN: 
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where )(nx  and )(~ nx  are the samples of the original and the reconstructed 
signals, respectively, x  – the mean value of the original signal, and N – the 
length of the window over which the PRD is calculated. 

For compression evaluation we used the compression rate (CR) defined 
as the ratio between the number of bits needed to represent the original and the 
compressed signal, 

 

orig.

comp.

CR ,
b
b

  

 

where borig. and bcomp. represent the number of bits required for the original and 
compressed signals, respectively. 

For global evaluation we used the Quality Score (QS) introduced by Fira 
et al., (2008), which represents the ratio between the CR and the PRD. 
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4. Experimental Results 

 
We used 24 ECG recordings from the MIT-BIH Arrhythmia database 

acquired at a sampling frequency of 360 Hz, with 11 bits/sample (MIT BIH). 
Besides the ECG signals, the database also includes annotation files containing 
the index of the R-wave and the class to which each ECG pattern belongs. These 
annotations were necessary in the preprocessing stage (segmentation of cardiac 
cycles and building of dictionaries). 

In Table 1 the average results for 24 ECG records from the MIT-BIH 
Arrthmia database are presented. 

Table 1 
Average Results for 24 ECG Records 

Projection matrix CR Avg. PRD Avg. PRDN QS 
Patient specific dictionary with un-centered R-wave 

Gaussian distribution Random*Dict†(20*301) 15:1 0.78   11.98 19.23 
0 and 1 (with controlled arrangement) (20*301) 15:1 0.94   16.06 15.87 
Gaussian distribution Random (20*301) 15:1 0.82   13.82 18.29 

Patient specific dictionary with centered R-wave 
Gaussian distribution Random*Dict†(20*301) 15:1 0.51 9 29.13 
0 and 1 (with controlled arrangement) (20*301) 15:1 0.71 12.4 20.98 
Gaussian distribution Random (20*301) 15:1 0.72   12.51 20.59 

 
Since many authors report besides the average results obtained on the 

MIT-BIH databases also the results on record no. 117 we have presented such 
results in Table 2. 

Table 2 
Average Results for the 117 Record 

Projection matrix CR Avg. PRD Avg. PRDN QS 
Patient specific dictionary with un-centered R-wave 

Gaussian distribution Random*Dict†(20*301) 15:1 0.38   8.82 39.47 
0 and 1 (with controlled arrangement) (20*301) 15:1 0.56 12.81 26.78 
Gaussian distribution Random (20*301) 15:1 0.53 12.27 28.30 

Patient specific dictionary with centered R-wave 
Gaussian distribution Random*Dict†(20*301) 15:1 0.38   8.73 39.47 
0 and 1 (with controlled arrangement) (20*301) 15:1 0.49 11.25 30.61 
Gaussian distribution Random (20*301) 15:1 0.48 11.15 31.25 

 
In Table 3 we present results for reconstructed cardiac patterns with and 

without centered R-wave for CR = 4:1, 10:1 and 15:1 for Gaussian distribution 
Random*Dict† projection matrix. 
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Table 3 
Average Results for the 117 Record for CR = 4:1, 10:1, Respectively 15:1 and  

Matrix Projection by Type Gaussian Distribution Random*Dict† 
Projection matrix CR Avg. PRD Avg. PRDN QS 

Patient specific dictionary with un-centered R-wave 

Gaussian distribution Random*Dict† 
  4:1 0.19 4.36 21.05 
10:1 0.29 6.77 34.48 
15:1 0.38 8.82 39.47 

Patient specific dictionary with centered R-wave 

Gaussian distribution Random*Dict† 
  4:1 0.19 4.54 21.05 
10:1 0.29 6.80 34.47 
15:1 0.36 8.43 41.66 

 
Table 4 contains the average results for 24 records from the database and 

also record no. 117 reported by Polania et al., (2011a, b) and Mamaghanian et al., 
(2011). 

Table 4 
Other results for Average Values for 24 Records and 117 Record 

 Record / Ave. CR Avg. PRD Avg. PRDN 

Other Compression Algorithms 
POLANIA (Polania et al.,  
2011a,b) 117   8:1   2.18 Notspec. 

POLANIA [Polania et al.  
2011a,b] 117 10:1 2.5 Notspec. 

MAMAGHANIAN 
(Mamaghanian et al., 2011) 
for before and after inter-
packet redundancy removal 
and Huffman coding 

Aver. for 24 
records 

4:1 (75) 
   Before Huffman 35 
   After Huffman 15 

 10:1 (90)    Before Huffman >45 
   After Huffman >45 

 15:1 (93) 
   Before Huffman >45 
   After Huffman >45 

 
Note that Mamaghanian et al., (2011), present a compression method 

based on the classic CS followed by Huffman coding. Thus the final CR is 
increased by using Huffman coding. The results obtained by Mamaghanian et 
al., (2011), are presented both before and after Huffman coding. Therefore, for a 
relevant comparison our results should be compared to those before Humman 
coding reported by Mamaghanian et al., (2011). 

Note also that Mamaghanian uses the compression ratio expressed as 
 

orig. comp.

orig.

CR 100,
b b

b


   

 
that is different from the formula used by us in this paper. Therefore, in Table 5 
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we presented the same number of bits required for the original and compressed 
signals difference between the two formulas, used, by Mamaghanian 
(Mamaghanian et al., 2011) and by us in this paper. 

Table 5 
Correspondence between CR Used by Mamaghanian  

(Mamaghanian et al., 2011) and us in this Paper 
orig . comp.

orig .

C R 10 0
b b

b


   

used by Mamaghanian 

orig.

comp.

CR
b
b

  

used by us in this paper 
Mamaghanian in this paper Mamaghanian in this paper 

10   1.11 91 11.11 
20   1.25 92 12.50 
30   1.43 93 14.29 
40   1.67 94 16.67 
50         2 95       20 
60 2.5 96       25 
70   3.33 97 33.33 
80         5 98       50 
90       10 99     100 

4. Conclusions  

In this paper we propose a new ECG compression method based on the 
CS concept which, on one hand requires an ECG signal preprocessing to 
delimitate the ECG signal in cardiac cycles (heart beat or cardiac patterns) to be 
compressed and, on the other hand, speculates the ECG signal specific features 
of each patient in the construction of the dictionary. Three projection matrices 
needed for compression, i.e., a projection matrix built taking into account the 
dictionary that will be used in the reconstruction phase (decompression), a 
Bernoulli matrix type, and a Gaussian random matrix are analysed. 

It is apparent that the best QS has been obtained for the method using 
patient specific dictionary with centered R-wave and optimized projection 
matrix. The results of Gaussian projection matrix are close to matrix with 0 and 
1 (with controlled arrangement). 
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ACHIZIŢIE COMPRIMATĂ A SEMNALELOR ECG UTILIZÂND 

DICŢIONARE SPECIFICE PACIENTULUI 
 

(Rezumat) 
 

Se propune o nouă metodă de compresie a semnalelor ECG bazată pe 
conceptul de Achiziţie Comprimată, metodă care, pe de o parte necesită o preprocesare 
a semnalului ECG pentru segmentare în cicluri cardiace care urmează a fi comprimate 
şi, pe de altă parte, speculează proprietăţile specifice ale ECG a pacientului în 
construcţia dicţionarului. Au fost utilizate trei tipuri de matrice de proiecţie, una bazată 
pe utilizarea dicţionarului care va fi utilizat în faza de reconstrucţie, o matrice de tip 
Bernoulli şi una aleatoare Gaussiană. Cele mai bune rezultate s-au obţinut cu dicţionare 
cu unda R centrată şi matrice de proiecţie optimizată. Rezultatele obţinute cu matrice de 
proiecţie Gaussiene sunt apropiate de cele bazate pe matricea conţinând 0 şi 1 cu 
aranjare controlată. 


