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Abstract. By providing system-wide synchronized voltage measurements, 
phasor measurement units improve the precision of classic state estimation 
algorithms used in real time power systems management and control. Worldwide 
scientific research studies proved that adding synchronized phasor measurements 
into the state estimation’s input measurement set results in a better estimation of 
the state variables. This paper investigates the opportunity of using these 
synchrophasor measurements for improving the estimation precision of a 
Multilayer Perceptron  Artificial Neural Network previously developed by the 
authors. Results of a case study show a better estimation when using voltage 
magnitude and angle measurements in the input data set. 

 

Key words: artificial neural networks; electrical networks; state estimation; 
phasor measurement units. 

 
 

1. Introduction 
 

The advance of electricity markets in Europe, with the objective of 
creating a unified European market, has led to the Price Coupling of Regions 
(PCR) initiative, in which seven major electricity exchanges serving 75% of the 
whole European demand adhered to the use of a common algorithm to compute 
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electricity prices and manage cross-border capacity on a day-ahead basis (APX, 
2015). Since Q4 2014, Romania, Hungary, Slovakia and Czech Republic are  
part of the 4M Market Coupling (4M-MC) project, which operates under the 
PCR rules, coordinated by OTE (Czech Republic) and EPEX SPOT (France and 
Germany), but separately from the Western European market (OPCOM, 2014). 

The joint operation of markets requires the monitoring and management 
of Wide Area electrical Networks (WAN). The preferred tools used by system 
operators are the State Estimation (SE) algorithms, with measurements provided 
by high performance Intelligent Electronic Devices (IEDs) such as Phasor 
Measurement Units (PMUs). Using the GPS clock as common reference, PMUs 
can provide voltage and current phasor measurements synchronized across wide 
geographical areas in transmission systems (Chakhchoukh et.al, 2014), but the 
development of small scale Distributed Generation raises the need of deploying 
such equipment also at the distribution level (Sanchez-Ayala et al., 2013), 
(Tlusty et al., 2013). While the classic approaches use system-wide estimation,  
distributed state estimation (DSE) is also possible, where local SE is made in 
network sections, then an aggregator unifies the results (Shuangshuang et.al, 
2012), (Qinghua et.al, 2009).  Attempts were made to replace the classical SE 
algorithms with Artificial Neural Networks (Kumar, 2012), (Luitel, 2009). The 
authors proposed such an algorithm in (Ivanov, 2014), which tests the 
possibility of using Multilayer Percepron (MLP) ANNs as a replacement for 
load flow or SE algorithms, and study cases performed on a 110 kV distribution 
network showed promising results.  The aim of this paper is to investigate the 
behavior of the ANN estimator when adding simulated PMU measurements in 
the input data set. The expected outcome is a better estimation precision. 

2. State Estimation   

State estimation (SE) algorithms are used by power grid operations to 
replace load flow algorithms. The most known implementation of a SE 
algorithm uses the Weighted Least-Squares (WLS) approach (Schweppe, 1970), 
which computes the state variables (bus voltage magnitudes and angles) based 
on measurements taken in real time from the monitored system and pseudo-
measurements (measurements obtained previously, but considered accurate). 

If [z] denotes a measurement vector, which can include bus voltages, 
branch power flows or bus powers, [x] is the state vector that needs to be 
computed, and for each known measurement zi, a hi function dependent on [x] 
can be written, then the WLS objective is to minimize the square difference 
between the measured and the computed value for all measurements  

   ([ ]) [ ] ([ ]) [ ] ([ ]) ,TJ x z h x W z h x                       (1) 

where W is a diagonal matrix with weights or confidence degrees for each 
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measurement. 
This equation is solved in an iterative process, using Newton 

linearization: 
1( )[ ] ([ ] ) [ ] .k T k kG x x H x R z       (2) 

 
In eq. (1), W is a diagonal matrix of weights describing the confidence 

degree of measurements.  In eq. (2),  H  is  the  Jacobian  matrix, G = HT([x]k) × 

× R–1H([x]k)  is the gain matrix and 
not

[ ] ([ ] ) [ ]k kz h x z    is the vector of errors 
between measured and computed values. 

From eq. (2), the corrections for the voltage approximation are 
computed, which are used to update the state variables and bring them closer to 
the optimal solution. The algorithm stops when kz][ falls under a given 
threshold, which indicates that the voltage approximations are close within the 
desired precision to true voltage values. 

The WLS SE algorithm, while being simple and with proven reliability, 
has some shortcomings. First of all, it requires the knowledge of electrical 
parameters for all relevant elements (branches, transformers) from the 
monitored system, in order to compute the Jacobian matrix. Also, while the 
main source of measurements for SE algorithms remains the SCADA/EMS 
system, voltage angle measurements cannot be used, because the 1…2 min. 
sampling rate would induce heavy errors, compromising the estimation results. 
This shortcoming is lately addressed by using GPS synchronized measurements 
provided by PMUs Finally, while in transmission systems there are sufficient 
measurements available and the network configuration is well known, this is not 
the case in distribution systems, where load measurements are often limited to 
values metered in substations, and cable routes and parameters are frequently 
unknown, especially in old networks. 

3. Artificial Neural Networks and the Proposed ANN SE Algorithm 

For addressing the inconveniences described above, the authors 
proposed in (Ivanov, 2014) an ANN based state estimation algorithm. 

Artificial neural networks are computer algorithms that mimic the 
architecture and operation of living brains. ANNs are formed by interconnecting 
neurons which form synapses using weights and process information according 
to specific activation functions. The unit neuron receives a fraction w of the 
input value x, which is amplified by a bias b and processed through the 
activation function F, obtaining the output y. For a neuron with multiple inputs, 
its equation can be written as: 

  .j j
j

y F n F w x b
 

   
 
      (3) 
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The neurons from intermediate layers can have multiple outputs as well. 
The interconnection layouts, number of layers and neuron activation functions 
define several types of ANNs, all requiring two stages of use: training and 
generalization. In the training stage, the ANN needs to process a data set in 
order to learn the problem that it needs to solve. The learning process consists in 
updating the neurons’ weight and biases, until a stopping criterion is met. 

In the generalization stage, the ANN is able to compute reasonably 
accurate solutions for new input data, which were not used for training. 

The Multilayer Perceptron is well known for its approximation 
capabilities, even with data of uncertain precision. Trained with discrete input-
output pairs x – f(x), it is able to discover the relation, or tendency, or 
mathematical dependence which exists between the inputs and the outputs, 
provided that two conditions are met: (1) the training data set is sufficient in 
size, and (2) the training data set is relevant and covers the entire range for 
which the problem needs to be solved in the generalization stage. 

Various training algorithms werte developed. For instance, the Matlab 
Neural Network Toolbox provides 12 (Matlab, 2012). In this paper, the Resilient 
Backpropagation algorithm RProp (Riedmiller, 1993) was used. If the standard 
backpropagation algorithm (Rumelhart et.al., 1986) updates the neuron biases 
and weights by computing the error E between the desired and obtained outputs 
and computing the derivative of the error affected by a  learning rate η: 

2( ) ( )

1

1 ,
2

M
m m

m
E d o



                                    (4) 

1 ,t
ij

t t
ij i j w

ij

Ew w
w

 
 


                                     (5) 

RProp uses instead the error sign adapting the weigts at each t+1 cycle 
11   t

ij
t
ij

t
ij www                                         (6) 

using δij coefficients which change their values based on the sign of the error 
derivative: 
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giving the weight updates: 
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  (8) 

This approach ensures better convergence than backpropagation, with 
less memory usage than other training algorithms such as Levenberg-Marquardt. 

The proposed ANN estimator exploits the approximation capabilities of 
the Multilayer Perceptron and eliminates the need of knowing the electrical 
parameters and physical configuration of the analyzed electrical network. Also, 
it replaces the iterative computation with a single forward propagation through 
the MLP and, as it will be seen in the case study section, can work with less data 
than required by a classic WLS SE algorithm. A comparison between the two 
approaches is given in Fig. 1. 

In an electrical system, when its operating configuration does not 
change, the bus voltages are directly related to the load level:  

voltages = f(bus loads).                                      (9) 
Since the WLS algorithm uses as state variables bus voltages and as 

inputs measurements which themselves are input to load flow calculations or 
auxiliary variables computed by load flow algorithms, then eq. (9) can be 
rewritten:  

state variables = g (input measurements),   (10) 

and a MLP ANN can be trained to approximate g using input-output pairs which 
can be measurements archived by SCADA or simulated with load flow 
calculations (Fig. 2).  For  the proposed SE algorithm, selected branch active and 

 
 

Fig. 1 – A comparison between the WLS 
and the ANN SE algorithms. 

Fig. 2 – The MLP learning principle for the 
SE problem. 
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reactive power flows were used as inputs, while the bus voltages in magnitude 
and angle were used as outputs. In order to simulate PMU measurements, the 
voltage measurements corresponding to three buses were removed from the 
output data and inserted into the input data set. MLPs were trained in both 
scenarios, and their results were compared to see if using the PMU 
measurements improves the estimation. The data needed for training was 
obtained by generating randomly a number of load scenarios for a test network, 
for which the corresponding voltages and branch power flows were computed 
with a load flow algorithm and then used to build input-output pairs for the 
MLP. After training, the ANN estimator was tested with another set of randomly 
generated inputs, and then with a real loading scenario known for the test 
electrical system. The following performance indices were used, for voltage 
magnitude and angle: 

a) the average percentage bus estimation error: 

loadflow MLP SE

no.of buses no.of tes t scenarios loadflow

voltage voltage
APE average average 100 ,

voltage
  

   
   

 (11) 

b) the maximum average bus estimation error:  

loadflow MLP SE

no.of buses no.of test scenarios loadflow

voltage voltage
AMPE max average 100 ,

voltage
  

   
   

 (12) 

 
c) the maximum percentage estimation error: 

loadflow MLP SE

no.of buses no.of test scenarios
loadflow

voltage voltage
MPE max max 100 .

voltage
  

   
   

 (13) 

4. Case Study and Results  

The method described above was tested on a simplified version of a real 
110 kV meshed distribution system with 33 buses and 49 branches, represented 
in Fig. 3. Real loading data was available only for a peak hour in a typical 
summer day. Thus, 24,000 random loading scenarios were generated, with loads 
from 0% up to 80% of the HV/MV transformers rated power. The Newton-
Raphson load flow algorithm was used to compute the bus voltages and branch 
power flows pairs for training and testing the ANN. 20,000 scenarios were used 
for training, while 4,000 were reserved for testing. As measurements, both the 
active and reactive power flows from all branches connected to selected buses in 
the system were used. Two reference measurement placement options were 
considered,   the  first  with  "low"  measurements  density,  which  resulted  in  a 



Bul. Inst. Polit. Iaşi, t. LX (LXIV), f. 4, 2014                                        15                                         
 

 

 
Fig. 3 –The electrical system used in the case study.  

number of 56 measurements from 28 monitored branches found in 7 buses, the 
other with "high" number of measurements, 66, from 33 monitored branches 
found in 11 buses. For each reference scenario, two PMU placement scenarios 
were considered, (a) when three PMUs are placed in buses where branch 
measurements are known, and (b) when three PMUs are placed in three new 
buses, thus increasing the number of monitored buses (Figs. 4 and 5). In order to 
avoid the high angle estimation error seen in (Ivanov, 2014), a voltage reference 
of 30 degrees was used in the slack bus. 

In Figs. 4 and 5, black fill square dots denote buses with classical 
measurements, and white fill round dots denote PMU measurements.  
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case (a) case (b) 

Fig. 4 – PMU placement for the "low" measurements density scenario.  

  
case (a) case (b) 

Fig. 5 – PMU placement for the "high" measurements density scenario 
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Table 1 
Estimation Results, "Low" Measurements Density  

 APE AMPE MPE 
reference mag. angle mag. angle mag. angle 

33 hidden neurons 
min 0.0237 0.0239 0.0326 0.0408 0.1375 0.2071 
avg 0.0243 0.0256 0.0335 0.0458 0.1473 0.3088 
max 0.0248 0.0275 0.0349 0.0552 0.1585 0.4303 

66 hidden neurons 
min 0.0194 0.0250 0.0298 0.0475 0.1339 0.2486 
avg 0.0223 0.0263 0.0328 0.0505 0.1507 0.2862 
max 0.0235 0.0279 0.0345 0.0545 0.1806 0.3459 

132 hidden neurons 
min 0.0138 0.0369 0.0264 0.0638 0.1320 0.3477 
avg 0.0157 0.0394 0.0296 0.0705 0.1615 0.4455 
max 0.0169 0.0415 0.0356 0.0776 0.2114 0.5058 

case (a) mag. angle mag. angle mag. angle 
31 hidden neurons 

min 0.0228 0.0225 0.0312 0.0405 0.1258 0.2064 
avg 0.0233 0.0242 0.0330 0.0433 0.1418 0.2505 
max 0.0236 0.0263 0.0354 0.0469 0.1677 0.3116 

62 hidden neurons 
min 0.0190 0.0247 0.0284 0.0459 0.1358 0.2575 
avg 0.0212 0.0271 0.0325 0.0500 0.1553 0.2982 
max 0.0228 0.0286 0.0373 0.0552 0.1971 0.3491 

124 hidden neurons 
min 0.0157 0.0426 0.0303 0.0719 0.1811 0.4167 
avg 0.0173 0.0451 0.0332 0.0825 0.2221 0.5206 
max 0.0191 0.0467 0.0383 0.0917 0.3383 0.6523 

case (b) mag. angle mag. angle mag. angle 
31 hidden neurons 

min 0.0228 0.0213 0.0315 0.0365 0.1349 0.2224 
avg 0.0238 0.0230 0.0341 0.0400 0.1468 0.2705 
max 0.0247 0.0245 0.0364 0.0423 0.1621 0.3832 

62 hidden neurons 
min 0.0179 0.0248 0.0275 0.0436 0.1270 0.2147 
avg 0.0197 0.0270 0.0304 0.0480 0.1431 0.2851 
max 0.0221 0.0298 0.0338 0.0564 0.1552 0.3260 

124 hidden neurons 
min 0.0149 0.0402 0.0258 0.0656 0.1728 0.4108 
avg 0.0167 0.0441 0.0324 0.0764 0.2024 0.5313 
max 0.0200 0.0501 0.0405 0.0887 0.2366 0.7631 
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Table 2 
Estimation Results, "High" Measurements Density  

 APE AMPE MPE 
reference mag. angle mag. angle mag. angle 

33 hidden neurons 
min 0.0236 0.0381 0.0327 0.0767 0.1498 0.3210 
avg 0.0247 0.0395 0.0346 0.0780 0.1684 0.3544 
max 0.0255 0.0413 0.0370 0.0791 0.1914 0.3903 

66 hidden neurons 
min 0.0205 0.0401 0.0298 0.0795 0.1363 0.3590 
avg 0.0219 0.0410 0.0351 0.0825 0.1656 0.4077 
max 0.0238 0.0423 0.0384 0.0851 0.1766 0.4815 

132 hidden neurons 
min 0.0163 0.0508 0.0304 0.0972 0.1672 0.5007 
avg 0.0175 0.0535 0.0340 0.1015 0.1946 0.5764 
max 0.0191 0.0575 0.0371 0.1106 0.2285 0.7446 

case (a) mag. angle mag. angle mag. angle 
36 hidden neurons 

min 0.0231 0.0218 0.0310 0.0333 0.1235 0.1805 
avg 0.0240 0.0231 0.0336 0.0352 0.1542 0.2722 
max 0.0246 0.0254 0.0393 0.0386 0.1774 0.4248 

72 hidden neurons 
min 0.0171 0.0260 0.0284 0.0410 0.1344 0.2527 
avg 0.0203 0.0289 0.0316 0.0461 0.1529 0.3197 
max 0.0229 0.0313 0.0344 0.0540 0.1855 0.4843 

144 hidden neurons 
min 0.0176 0.0457 0.0339 0.0700 0.1960 0.4452 
avg 0.0191 0.0496 0.0374 0.0809 0.2207 0.5349 
max 0.0204 0.0552 0.0419 0.0931 0.2727 0.6320 

case (b) mag. angle mag. angle mag. angle 
36 hidden neurons 

min 0.0230 0.0208 0.0321 0.0273 0.1416 0.2217 
avg 0.0240 0.0230 0.0339 0.0347 0.1464 0.2722 
max 0.0245 0.0248 0.0357 0.0395 0.1514 0.3390 

72 hidden neurons 
min 0.0170 0.0257 0.0265 0.0404 0.1340 0.2484 
avg 0.0203 0.0268 0.0326 0.0434 0.1563 0.2905 
max 0.0236 0.0296 0.0368 0.0491 0.1904 0.3380 

144 hidden neurons 
min 0.0180 0.0438 0.0333 0.0698 0.2082 0.4140 
avg 0.0195 0.0489 0.0382 0.0800 0.2296 0.5456 
max 0.0209 0.0524 0.0496 0.0906 0.2652 0.6934 
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The estimation comparison is given in Tables 1 and 2, when training the 
MLP with one hidden layer with a size of half, same and double the number of 
inputs. The results show minimum, average and maximum APEs, AMPEs and 
MPEs for 10 runs with each MLP configuration. The estimation without PMU 
measurements is already very accurate for the 4000 test scenarios, below 0.1% 
average and 0.75% maximum errors, but supplemental PMU measurements 
have a mixed effect. While estimations with lower number of hidden neurons 
are usually improved, high hidden neuron count configurations show an 
increased estimation error. The improvement effect is better in the scenarios 
with "high" density of measurements, but the differences are minor, which 
suggests a better behaviour of the MLP estimator compared to the WLS 
estimator when a limited number of measurements is available. 

 

 
 

 
 

Fig. 6 – Comparison between the voltage estimation error obtained using a 33/36 
neurons hidden layer architecture ANN, with classical and classical + PMU 

measurements (“low density scenario”). 
 

The second test used the real load scenario known for the system, for 
which input measurements were also computed using Newton-Raphson load 
flow. Using the best performance configurations found in the first stage, with 
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33/36 and 66/72 hidden neurons, (b) case, the bus voltages were estimated 
choosing from the ten tries the one with the lowest APE. The results are 
presented in Figs. 6 and 7, for voltage and angle and “low” and “high” 
measurements density. The buses are sorted in the descending APE value for the 
reference RNA estimation without PMU. 

 
 

 
 

 
 

Fig. 7 – Comparison between the voltage estimation error obtained using a 36/72 
neurons hidden layer architecture PMU with classical and classical + PMU 

measurements  (“high density scenario”). 
  
The estimation precision is improved for some buses and worsened for 

others, but a tendency to leverage the errors is observed, high errors being 
improved and low errors being worsened. The estimation precision is lower than 
in the ransom scenarios test, but with acceptable errors, which do not exceed 
1.2% for magnitude and 4.3% for angle in the the ANN+PMU scenario, usually 
being much lower. However, it should be noted that the measurements were not 
chosen based on an optimization process, but placed in such a manner that 
would ensure maximum observability. 
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4. Conclusions 

 
The study case results suggest that using PMU measurements in the 

proposed ANN estimator has the potential to improve the estimation results. 
However, obtaining the best results requires the optimization of the ANN 
architecture and of the measurements’ placement, which demands for additional 
research. The ANN estimator can be successfully used in small systems which 
have a known operation configuration, which does not change over time, and it 
can deliver accurate results even with a limited number of measurements. 
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ÎMBUNĂTĂŢIREA PRECIZIEI UNUI ESTIMATOR DE STARE BAZAT PE 

REŢELE NEURONALE ARTIFICIALE, FOLOSIND MĂSURĂTORI FAZORIALE 
 

(Rezumat) 
 

Fiind capabile să furnizeze măsurători de fazori de tensiune sincronizate la 
nivelul unui întreg sistem electroenergetic, dispozitivele pentru măsurări fazoriale au 
îmbunătăţit precizia algoritmelor clasice de estimare a stării utilizate la monitorizarea şi 
controlul în timp real al reţelelor electrice. Această lucrare testează oportunitatea 
utilizării măsurărilor fazoriale ca date de intrare într-un estimator de stare bazat pe o 
reţea neuronală artificială de tip perceptron multistrat,  dezvoltat de către autori într-o 
lucrare anterioară. Rezultatele obţinute într-un studiu de caz arată că precizia estimării 
se îmbunătăţeşte atunci când în setul de măsurători folosit ca date de intrare sunt incluse 
şi măsurări de tensiune, modul şi fază, provenite de la dispozitive pentru măsurări 
fazoriale. 


