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Abstract. Detection and classification of changes that appear in 
electroencephalogram (EEG) during mental tasks are investigated. Based on the 
autoregressive modelling, the normalized Itakura distance (nID) is used to 
quantify the changes reflected in the EEG signals. A database with 9 subjects is 
investigated. Statistical tests are performed in order to extract the relevant EEG 
channels. The classification is performed using linear discriminant classifier 
(LDA), quadratic discriminant classifier (QDA), Mahalanobis distance classifier 
(MD), k nearest neighbor (kNN) and support vector machine (SVM). The results 
suggest that normalized Itakura distance can be used as an offline method for 
motor imagery paradigms. 
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1. Introduction 
 

People with severe motor disabilities require alternative methods for 
communication and control. Electroencephalogram (EEG) based com-
munication systems measure specific features of brain activity and use the 
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results as control signals (McFarland et al., 2009). These systems are relatively 
inexpensive; they have a simple procedure of acquiring EEG signals and good 
temporal resolution of them. 

The motor imagery paradigm is one of the main EEG based brain 
computer interface systems. By thinking about moving their limbs, the subjects 
can produce relevant patterns, named event-related (de)synchronization 
(ERD/ERS) in Mu (8,...,12 Hz) or Beta (12,...,30 Hz) rhythms of the EEG 
signals (Pfurtscheller et al., 1999).  

 The cortical areas involved in motor function show activity when the 
person performs motor imagery tasks. When the person is engaged in a motor 
task the neural networks in the corresponding cortical areas are activated. This 
blocks the idle synchronized firing of the neurons and thus it causes a 
measurable attenuation in the frequency range of 8,...,12 Hz or 8,...,30 Hz. The 
location of this feature depends on the type of motor task. For example, if a 
person moves his left arm, the contralateral brain region will display this ERD 
feature, while the neurons in the ipsilateral cortical motor area continue to fire 
synchronously (Devlaminck et al., 2009).  

Different methods for detection and classification of ERD/ERS due 
motor imagery were proposed during last years. The Mahalanobis distance is 
examined in (Babiloni et al., 2001), a two-equivalent dipole model for source 
analysis it is proposed in (Kamousi et al., 2005)  and the Hurst exponent is 
estimated using different types of wavelet  in (Aldea et al., 2013). 

In this paper we proposed a method based on normalized Itakura 
distance to discriminate between mental tasks (left and right hand imagination) 
in a motor imagery BCI paradigm.  

 
2. Methodology 

 
2.1. Data Collection 

 
The database from BCI competition 2002 provided by dr. Osman is used 

(Osman et al., 2001). The EEGs were recorded from 9 well trained subjects who 
were asked to imagine left or right hand movement. Each subject had to perform 
180 trials (90 left hand movement imaginations, 90 right hand movement 
imaginations). The timing of the experiment is shown in Fig. 1 and each trial 
epoch lasted 6 s. The EEG signals were recorded with 59 electrodes placed on 
the scalp according to International 10/20 system and the reference was on the 
left mastoid. The sampling frequency is 100 Hz. 

 

 
Fig. 1 – The experimental paradigm.  
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As  Mu  rhythm desynchronizations appear in the motor cortex, only 12 
electrodes (FC3, FC1, FC2 ,FC4 ,C3 ,C1, C2, C4, CP3, CP1, CP2, CP4) are 
selected for further processing (Wolpaw et.al, 2002). 

 
2.2. The Autoregressive Model 

 
The autoregressive model (AR) is used to characterize EEG signals and 

to quantify the changes that appear during mental tasks. 
The two most popular and well-established methods for AR parameter 

estimation are the autocorrelation method, in which the Yule-Walker equations 
are solved using the Levinson-Durbin algorithm, and the maximum entropy 
method, as implemented by the Burg algorithm (Pardey et. al, 1996). 

The EEG signal,  ny ,  is assumed to be the output of an autoregressive 
system driven by white noise.  

The AR model is represented by:  
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where: ak are the parameters of the model, p – the model order and e(n) – the 
prediction error. 

2.3. The Itakura Distance 

The Itakura Distance (ID) was mainly used to measure the similarities 
between voice signals (Itakura, 1975) and to separate sleep stages (Estrada, 
2004). 

We denoted the relaxation EEG signal by yRELAX(n), the EEG signal 
corresponding to the imagination of the left hand by yLEFT(n), the EEG signal 
corresponding to the imagination of the right hand by yRIGHT(n) and the model 
order p (the same for all AR processes). The parameters RELAX

ka , LEFT
ka , RIGHT

ka , 
k = 1,2,3,…, p characterizing the processes are: 
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When yRELAX(n) represents the output of the AR(p) model for the relaxation 
period, the minimum square error (MSE) is: 
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where: 
RELAX

( )yR p  is the autocorrelation matrix for yRELAX(n), (Kong et al., 
1995). 

The MSEs when the relaxation EEG signal is the output of any other 
AR(p) model, described by aLEFT or aRIGHT parameters are:  

        

  
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T
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  
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The IDs between the relaxation state and left/ right motor imagery state 
are as follows: 
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A normalization procedure 0-100 is performed and it is defined by: 
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The block diagram of the proposed method, based on normalized 
Itakura distance, is illustrated in Fig. 2.  

  

 
Fig. 2 – The proposed method based on normalized Itakura distance. 
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3. Results 

 
Sequences of the EEG segments are extracted for each mental task. 

Four sets of data are formed: the right motor imagery, the relaxation succeeding 
right motor imagery, the left motor imagery, the relaxation succeeding left 
motor imagery. 

The method is applied on Mu rhythm (frequency range 8,…,12 Hz). 
Model orders p = 6 and p = 10 are selected for AR processes as indicated in 
Kong et al. (1995) and Estrada et al. (2005). 

The normalization of the ID is performed for all trials, all selected 
channels and for all subjects. 

The statistical difference between right nID and left nID is evaluated. 
Shapiro-Wilk test (King et al., 2012) is performed in order to see if nIDs follow 
a normal distribution. If data have a normal distribution, paired t-test is applied 
for assessing left and right ID statistical difference. On channels that have not 
met the normality condition, Wilconox signed-rank test is performed.  

The selected channels after applying the statistical tests for model order 
6 and 10 and for each subject are shown in Table 1.  
 

Table 1 
The Selected Channels for Fixed Model Orders for Each Subject  
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For model order 6, subjects 4 and 6, are excluded for further processing, 

because no channel fulfilled the imposed conditions by statistical tests. For 
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subject 3, from 12 channels, 8 channels are selected, while for subject 7 only 
channel CP1 is chosen. 

Regarding the model order 10, for subject 8 a number of 9 channels are 
chosen. Only 2 channels are selected during statistical test for subjects 2, 3, 6 
and 7. 

A 10 × 10 fold cross validation estimated the classification rate for each 
subject. The used classifiers are:  linear discriminant analysis (LDA) (Garrett et 
al., 2003), quadratic discriminant analysis (QDA) (Hastie et al., 2005), 
Mahalanobis distance (MD) (Babiloni et al., 2001), k nearest neighbor (KNN) 
(Chaovalitwongse et al., 2007) and support vector machine (SVM) (Bennett et 
al., 2000). 

LDA is one of the most popular classification algorithms for motor 
imagery based BCI, P300 speller and steady state visual evoked potentials 
based BCI. QDA is closely related to LDA. Although it is not reported and used 
as much as linear classifier in BCI systems, the quadratic classifier reported 
satisfactory and encouraging results. MD is a statistical distance function. 
Despite its good performance, it is still rarely used in the literature on BCI. 
KNN is not very popular in the BCI community. However, when used in BCI 
systems with low-dimensional feature vectors, kNN may prove to be efficient. 
SVM uses a discriminant hyperplane to identify classes and provides good 
results in BCI applications due its advantages: good generalization properties, 
insensitive to overtraining and low speed of execution (Lotte et al., 2007). 

Figs. 3 and 4 display the classification rates obtained with LDA, QDA 
and MD classifiers for model order 6 and 10.  

For model order 6 the highest classification rates are achieved with 
LDA (above 60%). Subject 5 had the highest rates, while subject 7 the smallest 
ones.  

  

 
Fig. 3 – The classification rates for model order 6 obtained with LDA, QDA and MD 

classifiers. 
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The classification rates obtained with model order 10 are in the range 
59,…,91%.  The smallest discrimination rate is obtained with quadratic 
classifier    (59% – subject 6) and the highest discrimination rate with linear 
classifier (91% – subject 4). 

 

 
Fig. 4 – The classification rates for model order 10 obtained with LDA, QDA and MD 

classifiers. 
 

Table 2 presents the classification rates obtained with KNN classifier 
based on the outcome of the k (1, 2, 3, 4 and 5) neighbors for model order 6.  
The highest discrimination rates are achieved with a number of 5 neighbors for 
subjects 1, 3, 5, 9.  

 
Table 2 

The Classification Rates for Model Order 6 Obtained with KNN 
 

Subjects 
Number of neighbors 

1 2 3 4 5 
1 63.53% 63.59% 63.66% 63.95% 64.00% 
2 81.34% 80.99% 81.11% 81.00% 80.67% 
3 80.73% 81.19% 81.40% 81.82% 82.22% 
5 80.98% 81.43% 81.86% 82.27% 82.67% 
7 55.61% 55.95% 55.58% 55.68% 55.33% 
8 76.32% 76.29% 76.27% 76.24% 76.22% 
9 80.73% 80.71% 80.93% 81.14% 81.33% 
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Table 3 is similar to Table 2, but for model order 10. The smallest 
classification rate is 60.63% – subject 6 for one neighbor, but only 2 channels 
are selected for processing. For subject number 8, where 9 channels are 
selected, the classification rates are in the range 81.71%,…,82.44%. Excepting 
subjects 6 and 7, the other subjects achieved discrimination rates above 74%. 
The best classification rates belong to subject 9, range 81.88%,…,82.44%.   
 

Table 3 
The Classification Rates for Model Order 10 Obtained with KNN 

  
Subjects 

Number of neighbors 
1 2 3 4 5 

1 76.09% 76.36% 76.62% 76.87% 76.89% 
2 74.88% 74.94% 74.54% 74.15% 73.78% 
3 75.60% 75.89% 76.16% 76.42% 76.44% 
4 76.33% 75.65% 75.23% 74.38% 74.22% 
5 87.80% 87.62% 87.44% 87.27% 87.11% 
6 60.63% 60.99% 61.34% 61.68% 61.78% 
7 65.94% 65.25% 64.81% 64.17% 63.78% 
8 81.64% 81.32% 81.71% 82.09% 82.44% 
9 81.88% 82.03% 82.18% 82.31% 82.44% 

  
Table 4 shows the comparison between classification rates attained with 

SVM classifier, for model orders 6 and 10. It is important to notice that, for 
90% of subjects, the classification rates obtained with model order 10 are higher 
than those acquired with model order 6. 
 

Table 4 
The Classification Rates for Fixed Model Orders Obtained with SVM Classifier 

Subjects Model order 
6 10 

1 60.00% 84.44% 
2 80.00% 77.78% 
3 77.78% 88.89% 
4 – 75.56% 
5 84.44% 80.00% 
6 – 46.67% 
7 57.78% 71.11% 
8 75.56% 75.56% 
9 84.44% 80.00% 

  
Overall the highest classification rates were obtained with kNN 

classifier.  
The findings are consistent with other works (Ince et al., 2007; 

Kamousi et al., 2005) in which the dataset exploited by this paper is used. So, in 
(Ince et al., 2007) where is investigated a time–frequency approach using six 
subjects (1, 2, 5, 6, 7, 9), for subject 2 and subject 5 are reported the 
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classification rates 91.4% and 76.1% respectively. With normalized Itakura 
distance, for subject 2 the classification rates achieved were in the range 
71.11%,…,81.34%, while for subject 5  the classification rates were above 
80.00%. 
 

4. Conclusions and Future Research 
 

Based on autoregressive modeling, the proposed method explores the 
normalized Itakura distance for a motor imagery paradigm. Statistical tests 
discarded the irrelevant information and maintained in the study only the 
channels with important features which were used in classification. Based on 
achieved classification rates, we can conclude that normalized Itakura distance 
can detect changes that appear during mental tasks, it is simple to apply and it 
can be used as an offline method for BCI paradigms.  

Further work implies developing and testing generalized Itakura 
distance and using combinations of classification methods for improving the 
classification rates.   
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DISCRIMINAREA PE BAZA DISTANŢEI ITAKURA NORMALIZATE 

UTILIZATĂ ÎNTR-O  PARADIGMĂ DE IMAGINARE MOTORIE FOLOSIND 
INTERFAŢA CREIER CALCULATOR 

 
(Rezumat) 

 
Se investighează detectarea şi clasificarea modificărilor care apar în 

electroencefalogramă (EEG) în timpul sarcinilor mentale. Bazată pe modelul 
autoregresiv, distanţa Itakura normalizată (nID) este utilizată pentru a cuantifica 
modificările reflectate în semnalele EEG. În acest studiu este folosită o bază de date cu 
9 subiecţi. Testele statistice au fost efectuate pentru de a extrage canalele EEG 
relevante. Clasificarea se realizează cu ajutorul analizei discriminante liniare (LDA), a 
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analizei discriminante pătratice (QDA), a clasificatorului bazat pe calcularea distanţei 
Mahalanobis (MD), a algoritmului celui mai apropiat vecin k (kNN) şi a clasificatorului 
vector suport (SVM). Rezultatele obţinute sugerează că distanţa Itakura normalizată 
poate fi folosită ca o metodă de analiză offline pentru paradigmele bazate pe imaginarea 
motorie în interfeţele creier-calculator. 



 


