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Abstract. This paper presents a direct AC-AC single-phase buck-boost 
converter. The circuit is simple and has good performances, whatever the load 
nature. The correct functioning of the circuit at a 20 kHz switching frequency 
was tested both by simulation and experimentally. 
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1. Introduction 
 

AC-AC converters are currently used in numerous fields, such as: AC 
motor drive, adjustable AC power supplies, electronic transformers, voltage 
waveform restorers, adjustable impedances, etc. These converters successfully 
replace alternating voltage variators using thyristors or triacs. Since the 
functioning frequency is high (more than 20 kHz), there is no noise, filters are 
small in size, efficiency is high and the current from the power supply is nearly 
sinusoidal. 

The first AC-AC converters analysed were buck converters (AC 
choppers) (Revenkar, 1977). References (Chose & Park, 1989; Jang & Choe, 
1991; Do-Hyum & Choe, 1995) present improved PWM techniques, which 
increase the power factor and eliminate certain harmonics (in the absence of 
grid filters). In (Lucanu & Ursaru, 2003), simulations were used to analyse an 
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IGBTs chopper at a 5kHz frequency. Reference (Congwei & Bin, 2009) 
presents a three-phase AC-AC converter with 9 IGBTs, and (Lai & Wang, 
2009) suggests an evaluation method for three-phase AC converters. 

In Lucanu & Ursaru (2005) and Kim & Min (1998), the choppers 
presented have improved switching and increased efficiency, but the circuits are 
complex. References Li & Yang (2001) and Thiago & Clovis (2011) present 
AC choppers with three-level converters and topologies that use commercial 
power modules (Neascu, 2013). In Aghion & Lucanu (2012) a high-
performance AC-AC single-phase converter with two inductances and four 
IGBTs is presented.  

This paper presents a direct AC-AC single-phase buck-boost converter 
using two IGBTs, eight diodes, an inductance and a capacitor (except for the 
grid filters). In fact, it is a classic buck-boost converter structure, where the two 
switches used are AC switches and a grid filter was added. The converter 
functions adequately irrespective of the load nature and it can insure a 
bidirectional energy flow if the load contains an AC source. The circuit design 
equations are presented below. The adequate functioning of the converter is 
checked both by simulation and experimentally; the tests were applied to a 
converter prototype developed by the authors. The prototype was used for 
connecting a device to the grid, when the nominal power supply is different of 
nominal voltage load. 

2. Circuit Analysis 

Fig. 1 presents the circuit of the AC-AC single-phase buck-boost 
converter. 
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Fig. 1 – Single-phase direct ac-ac buck-boost converter. 

 
The AC-AC converter contains the grid filter Lf, Cf , the inductor L, the 

capacitor C connected in parallel with the load impedance R, LS and two AC 
switches: one of them is made up of the IGBT S1 and the diodes D1-D4, and the 
other one includes S2 and D5-D8. The snubber circuits RS1, CS1 and RS2 CS2 are 
connected in parallel with the IGBTs. 
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Fig. 2 shows the waveform of the voltage v at the Cf capacitor 
terminals, and the generation of the control signals for the IGBT's S1 and S2. If 
the current through the inductor L is i > 0, for time intervals [0, DT], it will flow 
through D1, S1, D2, L. The load resistor R is powered by the capacitor C. For 
time intervals [DT, T], the current i will flow through L, the R-C circuit, D6, S2, 
D5. 
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Fig. 2 – The waveform of the v voltage and the generation of the control 

signal for IGBT's. 
 

We used uniform PWM control (Barleanu & Baitoiu, 2012), in which 
the conduction durations for the two switches are the same in all switching 
periods T, as in DC converters, and f = 1/T is the switching frequency (Valachi 
& Timis, 2009). The equations that describe the functioning of the converter 
rely on the following simplifying hypotheses: the passive components are ideal, 
the power devices are ideal switches, the voltage V on the capacitor Cf and the 
voltage V0 on the load are sinusoidal and remain constant for a period T, and the 
load is purely resistive. If Vk and Vk0 are voltages from the middle of the 
switching period K and ω is the grid voltage frequency, we can write the 
following equations: 
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For the interval [0, DT], when S1 is conducting and S2 is off: 



54                                               Ovidiu Ursaru and Cristian Aghion                                   
 

  

d ,
d

.

K
LK K

K
K Km

iv L v
t
vi I t
L

 

  


                                           (2)  

 
By replacing t = DT  to the eq. (2), we get the ripple of the current i 

through the inductor L in the switching period K: 
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For the interval [DT, T], when S1 is off and S2 is conducting: 
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Since this is a buck-boost converter, the control characteristic 

corresponding to the switching period K can be approximated by the equation 
below: 

0 .
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In a similar way we obtain the following average values of the currents 
through the bidirectional switches, corresponding to the switching period K: 
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and the following values for the maximum repetitive currents: 
 

 1 2 2 .
2 21

K K K
S KM S KM K

i Dv Dv
I I I

LfD R


    


                (7) 

 
The maximum collector-emitter voltages on the two IGBTs in the 

switching period K are the following: 
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The voltages VK have sinusoidal variation, therefore the average values 
of the currents through the switches on a period Tm of the AC grid voltage are: 
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and the maximum repetitive currents are: 
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The IGBT's stress voltage is: 
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The normalised current ripple results from equations (3) and (6): 
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This equation can be used for calculating the inductor L. The 

normalised ripple of the output voltage can be calculated by: 
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This equation allows for the calculation of the value of the capacitor C. 

3. Simulation and Experimental Results 

The adequate functioning of the circuit was tested by simulation and 
experimental prototype. The load used in the simulations and in the prototype is 
the same - a resistive load: R = 390 Ω, inductive load LS =750 mH, R = 390 Ω 
and the switching frequency is f = 20 kHz. 

Table 1 shows the main parameters used for the simulations and the 
experimental prototype. 
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Table 1 
Key Parameters of Experimental Prototype 

Parameters Symbol Value 
AC input voltage Vm 110 V (RMS) 
Input frequency fm 50 Hz 
Resistive load R 150 Ω 
Inductive Load R/Ls 150 Ω/750 mH 
Transistors S1, S2 IRGB8B60KPBF 
Diodes D1-D8 MUR460 
Capacitor C 2 uH 

Input filter Lf 13 mH 
Cf 10 uF 

Microcontroller  PIC16F684 
 

Snubber RS1-S2 100 Ω 
CS1-S2 3.3 nF 

 
Fig. 3 shows the waveforms obtained by simulations, - the waveforms 

of the i0 current load and of the im current source and the waveforms of the v0 
voltage load and of the vm voltage source and for a duty factor D = 0.3. 
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Fig. 3 – Waveforms of the im current, i0 current and vm voltage, v0 voltage 
for D = 0.3, in the resistive load case R = 150 Ω. 

 
Fig. 4 show the same waveforms for D = 0.3, for the inductive load 

case, where the output impedance is: R = 150 Ω and L = 750 mH. 
Fig. 5 shows the waveforms obtained by simulations, namely the 

waveforms of the i0 current load and of the im current source and the waveforms 
of the v0 voltage load and of the vm voltage source and for a duty factor D = 0.7. 

Fig. 6 show the same waveforms for D = 0.7, for the inductive load case, 
where the output impedance is: R = 150 Ω and L = 750 mH. 
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Fig. 4 –  Waveforms of the im current, i0 current and vm voltage, v0 voltage  
for D = 0.3,  in the inductive load case (L = 750 mH and R = 150 Ω). 
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Fig. 5 – Waveforms of the im current, i0 current and vm voltage, v0 voltage 
for D = 0.7, in the resistive load case R = 150 Ω. 
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Fig. 6 – Waveforms of the im current, i0 current and vm voltage, v0 voltage 
for D = 0.7, in the inductive load case (L = 750 mH and R = 150 Ω). 
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As presented in Fig. 7, the prototype circuit is made up of two boards; 
one of them includes the microcontroller, the LCD, the drivers and the low-
voltage supply circuit, and the other one contains the proposed power circuit, 
based on the schematic presented in Fig. 1. 

 

 
Fig. 7 –  Experimental setup. 

 
Fig. 8 shows the waveforms obtained by measurements, the waveforms 

of the i0 current load and of the im current source and the waveforms of the v0 
voltage load and of the vm voltage source and for a duty factor D = 0.3. 
 

 

 

 

 

 

 

 

 
 

Fig. 8 – Waveforms of the im current, i0 current and vm voltage, v0 voltage 
for D = 0.3, in the resistive load case R = 150 Ω. 
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Fig. 9 show the same waveforms for D = 0.3, for the inductive load 
case, where the output impedance is: R = 150 Ω and L = 750 mH. 

 

 

 

 

 

 

 

 

 
Fig. 9 – Waveforms of the im current, i0 current and vm voltage, v0 voltage 

for D = 0.3, in the inductive load case (L = 750 mH and R = 150 Ω). 
 
Fig. 10 shows the waveforms obtained by measurements, the waveforms 

of the i0 current load and of the im current source and the waveforms of the v0 
voltage load and of the vm voltage source and for a duty factor D = 0.7. 
 

 

 

 

 

 

 
 
 
 

Fig. 10 – Waveforms of the im current, i0 current and vm voltage, v0 
voltage for D = 0.7, in the resistive load case  R = 150 Ω. 
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Fig. 11 show the same waveforms for D = 0.7, for the inductive load 
case, where the output impedance is: R = 150 Ω and L = 750 mH. 

 
 

 

 

 

 

 

 

 
 
 

Fig. 11. Waveforms of the im current, i0 current and vm voltage, v0 voltage 
for D = 0.7, in the inductive load case (L = 750 mH and R = 150 Ω). 

 
Fig. 12 a shows THD for the input current obtained by simulations and 

measurements for resistive load and Fig. 12 b shows THD for the input current 
obtained by simulations and measurements for inductive load. 

 
 

 
Fig. 12 – THD analysis for the input current: a – for the resistive 

load, b – for inductive load. 
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Fig. 13 a shows the efficiency obtained by simulations and 
measurements for the cases of the resistive load, Fig. 13 b shows the efficiency 
obtained by simulations and measurements for the cases of the inductive load. 

 

Fig. 13 – Efficiency: a – for the resistive load, b – for the inductive load. 

4. Conclusions   

The paper presents a direct AC-AC buck-boost converter circuit 
containing, beside the grid filter, two bidirectional current switches, each made 
up of one IGBT, four diodes and a boost inductance. 

Switches were controlled by uniform sampling, with the same duty 
cycle in all the switching periods. The resulting control circuit is simple and the 
energy flow can be bidirectional. The adequate functioning of the circuit was 
tested by simulation, as well as on a laboratory prototype  

The results allowed the identification of the control characteristic and of 
the functioning efficiency. The waveforms obtained for the load voltage and 
current are very good. The supplied current is sinusoidal, therefore the circuit 
can be used particularly for converting the RMS voltage from 110 V to lower 
voltage or upper voltage depending of the duty cycle D. 
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CONVERTOR AC-AC MONOFAZAT 
 

(Rezumat) 
 

Circuitul propus, alimentat în curent alternativ, are rolul de a converti tensiunea 
furnizată sarcinii, într-o tensiune alternativă, de aceeaşi alură, dar care se modifică 
conform caracteristicii de funcţionare întâlnite în convertoarelor dc-dc de tip buck-boost 
(convertor mixt).  

Strategia de comandă a tranzistoarelor din componenţa convertorului este 
simplă, managementului de control al gestionării energiei furnizate unei sarcini este 
mult simplificat, permiţând pe ansamblu obţinerea unor performanţe globale net 
superioare, faţă de managementul de control utilizat în topologiile clasice. 

 


