
BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI
Publicat de

Universitatea Tehnică „Gheorghe Asachi” din Iaşi
Volumul 62 (66), Numărul 1, 2016

Secţia
ELECTROTEHNICĂ. ENERGETICĂ. ELECTRONICĂ

SOFTWARE IMPLEMENTATION OF A REAL-TIME CLOCK
USING A MICROCONTROLLER FROM ATMEL FAMILY

BY

PETRUŢ DUMA*

Technical University “Gheorghe Asachi” of Iaşi,
Faculty of Electronics, Telecommunications and Information Technology

Received: March 10, 2016
Accepted for publication: March 28, 2016

Abstract. The work describes a modality to implement by software a real-
time clock on a system equipped with a microcontroller from ATMEL family.
From the microcontroller’s resources, the application uses a 16-bit counter that,
when overflowed, triggers interrupt requests. The command program counts the
periodical interrupt requests and uses separate variables to count seconds,
minutes, hours, days, months and years. The application also implements by
software the features that allow use either daylight saving time or standard time,
to determine leap years, to count months with different number of days, to count
days of the week and so forth. The command program was extended to allow the
display of the clock and to enable the user to set the clock.

Keywords: real time clock; ATMEL microcontroller; command program.

1. Introduction

The management of various parameters in time, such as digital or
analog inputs/outputs, as well as signal acquisition from the sensors used in
applications require a real-time clock that can be implemented by means of
software. This paper describes a software real-time clock that provides a
complete time format that includes second, minute, hour, day, month and year.

* e-mail: pduma@etti.tuiasi.ro

92 Petruţ Duma

The user process manages all the system resources, including the real-
time clock, being commanded and controlled by an application system equipped
with a microcontroller from ATMEL family. Fig. 1 shows the basic structure of
a process working in real-time for monitoring various sensors, command
inputs/outputs or any other parameter. The notations have the following
meanings: AS_µC – application system equipped with microcontroller; S_RTC
– software real-time clock; DI – digital inputs; DO – digital outputs; AI –
analog inputs; AO – analog outputs; ADC – analog to digital converter; DAC –
digital to analog converter; DDC – data display console; SFM – serial flash
memory; RS232_SI – RS232 serial interface; PC – personal computer.

Fig. 1

The serial FLASH memory stores the parameters acquired at certain

preset time intervals, their extreme and accidental values along with the real-
time clock value. The data display console is optional and permanently displays
the real-time clock and the values of the data acquired. The system
communicates through the serial asynchronous interface with a personal
computer in order to transmit and receive various commands and data, to
display the parameters acquired in various formats and for downloading the
FLASH memory into the computer.

This work describes the software implementation of the real-time clock
while subsequent works will present the sensors monitoring, various digital and
analog signal acquisition, data storage into the FLASH memory and data
transfer to the personal computer.

2. Software Real-time Clock

The software application uses, from the ATMEL microcontroller
resources, the T0 counter and the interrupt system. The T0 counter is set to
work in timer operation mode and in 0 operation mode.

The hardware structure of the T0 counter used in this application is
shown in fig. 2. and includes the following notations: Osc – microcontroller’s
internal clock oscillator; XTAL – quartz crystal; FD12 – frequency divider by
12, used for the clock signal; SO – operation switch; 0TC/ – counter or timer

Bul. Inst. Polit. Iaşi, Vol. 62 (66), f. 1, 2016 93

operation indicator; T0I – T0 timer input (external); SC – control switch; TR0 –
timer run control indicator; INT0 – external interrupt request input (hardware
counter enable); GATE0 – timer gating control indicator; T0 – counter,
consisting of TL0 (low counter section) and TH0 (high counter section); TF0 –
timer overflow flag.

Fig. 2.

The T0 counter in operation mode 0 is basically a 13-bit counter,
consisting of an 8-bit counter (TH0) that performs a division by 256, preceded
by a 5-bit pre-divisor (TL0) that performs a division by 32; thus, T0 performs in
all a division by 25 × 28 = 8,192. The counter works if the control switch is
closed. In the application described, the counter enabling is made by setting
indicator TR0 and resetting indicator GATE0; therefore, the input of the
enabled counter is connected to the operation switch. The timer operation mode
is used with the 0TC/ indicator reset when counting the falling edges of the
clock signal divided by 12.

Thus, the clock oscillator signal divided by 12 passes through the
operation and control switches and reaches the T0 counter that performs a
division by 213. The counter overflow is signaled by setting TF0 indicator.

The application counts the overflows of the interrupt-operating T0
counter. In this case, the hardware structure of the interrupt system that is used
is depicted in Fig. 3. The notations used have the following meanings: INT0 –
external interrupt; TF0 – timer T0 overflow flag; INT1 – external interrupt;
TF1 – timer T1 overflow flag; TI/RI/SPIF – serial interface flags; TF2/EXF2 –
timer T2 flags; EA – global enable/disable indicator; ET0 – timer T0 interrupt
enable indicator; SPL – switch for setting the interrupt priority level; PT0 – timer
T0 interrupt priority indicator; HILMB – high interrupt level management
block; LILMB – low interrupt level management block.

94 Petruţ Duma

Fig. 3

The interrupt enabling for counter T0 is made by software, setting the
interrupt system general enable indicator (EA) and setting the interrupt
validation indicator for counter T0 (ET0).

If the interrupt system is active and an interrupt request is sent from
counter T0, then the microprocessor finishes to execute the current instruction
and forcedly executes a subroutine call instruction; the interrupt request is
accepted after sampling and analyzing the interrupt indicators using an internal
hardware structure.

The execution of the subroutine call instruction is made with the
purpose to save into the stack the address of the following instruction that must
be executed within the interrupted program and to load the program counter
with the jump address 000BH for counter T0. An internal indicator signalizes
the start of the interrupt processing program sequence.

Interrupt from counter T0 is selected for this high level application
using the switch that defines the adequate priority level by setting PT0
indicator. While dealing with a high level interrupt, no other interrupt request is
accepted.

The subroutine that processes the interrupt request ends with the
instruction that resumes the execution of the interrupted program (RETI). This
is a subroutine return instruction that actually resumes the execution by loading
the program counter with the address previously saved in the stack, but also the
update of the internal interrupt indicator, that authorizes new interrupt requests.

The frequency of the internal clock oscillator allows for the following
factorization:

15 3 2
 OSC = 22.1184 MHz = 2 3 5 Hzf   . (1)

The frequency of the operation switch output signal in timer mode is:

Bul. Inst. Polit. Iaşi, Vol. 62 (66), f. 1, 2016 95

13 2 2 OSC
t 1.8432 MHz 2 3 5 Hz

12
ff      . (2)

The frequency of the signal at the counter T0 output in operation mode
0, that is also the frequency of the periodical interrupt requests, is:

 t OSC
T0 INT 13 152 2 3

f ff f  


, (3)

2 2
T0 INT 3 5 Hz = 225 Hzf f   . (4)

The period of the periodical interrupt requests is:

INT
 INT

1 = 4.(4) msT
f

 (5)

The real time clock software operates in periodic interrupts set by
counter T0, with the duration of 4.(4) ms and relies on the basic principle of
counting the interrupt requests.

By counting 225 interrupts with period TINT is produced a duration of
one second, that is the basic period for the clock.

The one second duration is obtained by software, using a counter C1
that counts down from 225 to 1

INT1 225C T  . (6)
A counter for seconds C2 is used to obtain one minute duration,

counting up from 0 to 59
2 60 1C = C . (7)

A minute counter C3 is used to obtain one hour duration, counting up
from 0 to 59

3 60 2C C  . (8)
An hour counter C4 is used to obtain one day duration, counting up

from 0 to 23
4 24 3C = C . (9)

After incrementing the hour counter, it must be checked if the
conditions are met for passing to the daylight saving time, or the opposite, to
standard time.

The daylight saving time is legally adopted in some countries during a
part of the year, starting from a specific date in spring up until another specific
date in the autumn. The daylight saving time is earlier by one hour compared to
standard time. This system is designed to use as much as possible the natural
daylight for human activities, in order to save the energy that would otherwise
be spent for lightning.

In Romania, the daylight saving time starts on the last Sunday of
March, as 03:00 AM becomes 04:00 AM. The return to standard time is made
in the last Sunday of October, as the reverse process takes place, 04:00 AM

96 Petruţ Duma

becoming 03:00 AM.
A day of week counter C5 is used to obtain one week duration, counting

up from 1 to 7
5 7 4C = C (10)

The numeric values for the days are obviously sequential, numbered
from 1 to 7, according to the days of the week (Monday, Tuesday … Sunday) as
shown in Table 1.

Table 1

Day of the week Numeric value
Monday 1
Tuesday 2

Wednesday 3
Thursday 4

Friday 5
Saturday 6
Sunday 7

Using a day of month counter C6, one month duration is obtained, by

counting up from 1 to N, where N is number of days of the current month, as
follows: 28 for February in a standard year; 29 for February in a leap year; 30
for April, June, September and November; 31 for the other months

6 4; 28 29 30 31C = N C N / / /  . (11)

The numeric values for the months of the year and the number of days
in each month (N) are included in Table 2.

Table 2
Month Numeric value Number of days (N)
January 1 31

February – standard year 2 28
February – leap year 2 29

March 3 31
April 4 30
May 5 31
June 6 30
July 7 31

August 8 31
September 9 30

October 10 31
November 11 30
December 12 31

Bul. Inst. Polit. Iaşi, Vol. 62 (66), f. 1, 2016 97

The program memory of the microcontroller stores a data table starting
from the symbolic address TD that includes the number of days for each month
(N) for a standard year.

TD: 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31.
 The real time clock from this application is implemented for Gregorian
calendar that has an average length of the year of 365.2425 day and tends to get
close to the astronomic year (365 days, 5 hours, 48 minutes and 45 seconds).
 According to the Gregorian calendar, there are following rules: the
years divisible by 400 are leap years; the other years that are divisible by 100
are standard years; of the rest years, those divisible by 4 are leap years.

Using a month counter C7, one year duration is obtained, by counting
up from 1 to 12

7 12 6C = C . (12)

A year counter C8 counts up from 00 to 99 years in order to obtain a
duration of a century. Counter C8 is, in fact, the low part of the year counter and
is a byte-long variable

8 100 7C = C . (13)
Counter C9, which includes the high part of the year, is also a one-byte

variable and is initialized to 20. For a clock covering a duration longer as 100
years, it would be required to increment this counter.

209 =C . (14)
The counters described above (C1, C2, … C9) are presented in a

compact manner in table 3, including the numeric range of their possible values
(RV), the values used to test the counters (TV) in order to perform a transport,
the values used for the counter initialization (IV) and the decrement/ increment
manner of each counter (Dec/Inc).

Table 3
Counter Name RV TV IV Dec/Inc

Interrupt counter C1 255 … 1 0 255 -1
Second counter C2 0 … 59 60 00 +1
Minute counter C3 0 … 59 60 00 +1
Hour counter C4 0 … 23 24 00 +1

Day of week counter C5 1 … 7 8 1 +1
Day of month counter C6 1 … 28/29/30/31 29/30/31/32 1 +1

Month counter C7 1 … 12 13 1 +1
Year counter (low) C8 00 … 99 100 00 +1
Year counter (high) C9 20 - 20 +1

The basic variable flowchart of the program sequence that initializes the

real-time clock is presented below.

98 Petruţ Duma

SP←60H Initialize the stack pointer.
C1←225 Initialize interrupt counter with 225.

C2←0 Initialize second counter with 00.
C3←30 Initialize minute counter with 30.
C4←11 Initialize hour counter with 11.
C5←1 Initialize day of week counter with 1.

C6←15 Initialize day of month counter with 15.
C7←2 Initialize month counter with 2.

C8←16 Initialize the low part of the year counter with 16.
C9←20 Initialize the high part of the year counter with 20.
VI←0 Initialize standard (winter) time indicator with 0.
T0←0 Initialize counter T0 (high and low parts) with 0.

M1M0←0 Initialize counter T0 operation mode 0.
C/T0←0 Initialize counter T0 operation mode timer.

GATE0←0 Initialize software enable indicator for counter T0.
TR0←1 Initialize general enable indicator for counter T0.
EA←1 Initialize general interrupt enable indicator.
ET0←1 Initialize counter T0 interrupt enable indicator.
PT0←1 Initialize high priority level indicator for T0 interrupt.

OI Other initializations.
PCP Peripheral circuits programming.
BP Basic program – user process.

 Real-time clock initialization.

 Real-time clock display.

The basic variable flowchart of the subroutine that processes the
interrupt request from counter T0 is outlined below.

(SP)←Reg. Save registers into the stack (A, PSW etc.).
C1←C1-1 Decrement interrupt counter C1.

 Test if the interrupt counter is down to 0 (225 interrupts
received). C1=0?

 C1=0; a second has elapsed.
C1←225 Reinitialize interrupt counter with 225.

C2←C2+1 A second is counted into C2.
 Test if the second counter has reached 60 (60 seconds

elapsed). C2=60?
 C2=60; a minute has elapsed.

Bul. Inst. Polit. Iaşi, Vol. 62 (66), f. 1, 2016 99

C2←0 Reinitialize second counter with 0.
C3←C3+1 A minute is counted into C3.

 Test if the minute counter has reached 60 (60 minutes
elapsed). C3=60?

 C3=60; an hour has elapsed.
C3←0 Reinitialize minute counter with 0.

C4←C4+1 An hour is counted into C4.
 Test for daylight saving time.

C4=3? Test if the hour counter has reached 3.
 C4=3; the hours is 03:00 AM.

C7=3? Test if the month counter is 3.
 C7=3; the month is March.

C6≥25? Test if the day of month counter is higher than or equal to 25
 C6≥25; the day is one of the last seven of the month.

C5=7? Test if the day of week counter is 7.
 C5=7; the day is Sunday.

C4←4 The day is the last Sunday of March and the time becomes
04:00AM from 03:00 AM.

VI←1 The daylight saving time indicator is set.
 Jump to S2 to continue STCI-T0.
 Test for the end of daylight saving time and return to

standard time.
C4=4 Test if the hour counter is 4.

 C4=4; the hour is 04:00AM.

C7=10? Test if the month counter is 10.
 C7=10; the month is October.

C6≥25? Test if the day of month counter is higher than or equal to 25
 C6≥25; the day is one of the last seven of the month.

C5=7? Test if the day of week counter is 7.
 C5=7; the day is Sunday.

VI=1? Test if the clock is still set to daylight saving time.
 VI=1; the clock is still set to daylight saving time.

C4←3 The day is the last Sunday of October and the time becomes
03:00AM from 04:00 AM.

100 Petruţ Duma

VI←0 The daylight saving time indicator is reset.
 Continue STCI-T0

C4=24? Test if the hour counter has reached 24 (24 hours elapsed).
 C4=24; a day has elapsed.

C4←0 Reinitialize hour counter with 0.
C5←C5+1 A day of week is counted in C5.

 Test if the day of week counter has reached 8 (7 days
elapsed). C5=8?

 C5=8; a week has elapsed.
C5←1 Reinitialize day of week counter with 1.

C6←C6+1 A day of month is counted in C6.

N←(TD+C7-1) The variable N is assigned the value retrieved from the
memory location with address TD+C7-1 representing the
number of days of the current month in a standard year.

C7=2? Test if the month counter is 2.
 C7=2; the month is February.
 Test if the low part of the year counter is 00 (dividable by

100). C8=0?
 C8≠00; year not dividable by 100.

M←C8∩03 The variable M is assigned the two less significant bits of the
low part of the year counter.

M=0? Test if variable M is 0.
 M=0; the year is a leap year (dividable by 4).

N←29 The variable N is assigned the value 29, the number of days
in February, in leap years.

N←N+1 Update variable N to obtain the testing value.
 Test if the day of month counter is equal to N (if a time

period of 28/29/30/31 day is elapsed). C6=N?
 C6=N; a month’s time is elapsed.

C6←1 Reinitialize day counter with 1.
C7←C7+1 A month is counted in C7.

 Test if the month counter is equal to 13 (if a time period of
12 months is elapsed). C7=13?

 C7=13; a year’s time is elapsed.
C7←1 Reinitialize month counter with 1.

C8←C8+1 A year is counted in C8 (the low part of the year counter).
 Test if the low part of the year counter is equal to 100 (if a

time period of 100 years is elapsed). C8=100?
 C8=100; a century’s time is elapsed.

Bul. Inst. Polit. Iaşi, Vol. 62 (66), f. 1, 2016 101

C8←0 Reinitialize the low part of the year counter with 0.
C9←C9+1 A century is counted in C9 (the high part of the year counter)

Reg.←(SP) Restore the registers from the stack.

RETI Return from the subroutine for processing interrupt request,
to resume the interrupted program.

 C8=0 (the low part of the year counter is 00); is an year
dividable by 100.

M←C9∩03 The variable M is assigned the two less significant bits of the
high part of the year counter.

M=0? Test if variable M is 0.
 M=0; the year is a leap year (dividable by 400).

N←29 The variable N is assigned the value 29, the number of days
in February, in leap years.

 Jump to S4 to continue STCI-T0.

3. Conclusions

The real-time clock presented is software implemented for
application/development systems equipped with microcontroller AT89S8253,
but it can be used for any microcontroller from ATMEL family.

A minimal program version contains the clock initialization sequence
and the subroutine for processing interrupt requests from counter T0. In this
particular case, the user process makes use of the counter variables of the clock
(second, minute, hour, day, month and year) in order to save in a nonvolatile
memory the values of the process’s inputs and outputs at certain time intervals,
and also the extreme and accidental values that appear. The command program
uses 0.3 KB of memory space.

Other program versions include minimal functions, along with the clock
display and the user’s enable to set the clock. Two software versions were written.
One of the versions displays and initializes the clock using a serial console from
the personal computer and the command program uses 1.9 KB of memory. The
other version displays the clock on a time-multiplexed display consisting of six
display cells, each of them with 7 segments. The clock setting is made through
four programming switches. The command program for this version uses 1.4
KB of memory. The application implements all the functions described and is
remarkable by the small amount of memory required compared to its features.

A disadvantage of this implementation is that the microcontroller must
be powered from a DC source and also from batteries. This dual powering is
necessary in order to maintain the clock information by keeping at least the
microcontroller powered during power breaks.

102 Petruţ Duma

REFERENCES

Duma P., Microcontrolerul INTEL 8051. Aplicaţii, Edit. „TEHNOPRESS”, Iaşi, 2004.
Hintz J.K., Tabak D., Microcontrollers. Arhitecture, Implementation and Programming,

McGraw Hill, New York, 1993.
Lance A., Leventhal, Programmation en langage assembleur, Edit. Radio, Paris, 1998.
Peatmann B.J., Design with Microcontrollers, McGraw Hill, New York, 1998.
* * * ATMEL, Family Microcontroller, Data Book, 1998.
* * * MAXIM, Multichannel RS232 Drivers/Receivers, MAX232A Data Sheet, 2006.

IMPLEMENTARE CEAS DE TIMP REAL SOFTWARE CU
MICROCONTROLER DIN FAMILIA ATMEL

(Rezumat)

Lucrarea descrie modul de implementare prin soft a unui ceas de timp real pe

un sistem echipat cu microcontroler din familia ATMEL. Din resursele
microcontrolerului este utilizat un numărător de 16 biţi care la depăşirea capacităţii de
numărare solicită cereri de întrerupere. Programul de comandă numără cererile de
întrerupere periodice şi contorizează în variabile distincte secundele, minutele, orele,
zilele, lunile şi anii. Sunt asigurate prin soft facilităţi care permit trecerea la ora de vară
şi de iarnă, determinarea anilor bisecţi, contorizarea lunilor cu număr de zile diferite,
contorizarea zilelor din săptămână, etc. Programul de comandă este extins pentru a afişa
ceasul şi pentru a fi iniţializat de utilizator.

