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Abstract. In order to increase the spectral efficiency, a bit interleaved 
coded modulation can be combined with a high order modulation scheme like 
Phase Shift Keying (PSK) and Quadrature Amplitude Modulation (QAM), 
improving the communication system’s performance. In this paper, we derive 
and explain the soft estimates for a doubly iterative decoder using space-time 
turbo codes and a large number of transmit and receive antennas for 16–QAM 
and 64–QAM modulation used in a mobile communication system. 
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1. Introduction 
 

The use of multiple antenna transmission techniques increases the 
spectral efficiency of wireless systems. (Biglieri et al., 2005) presented a block 
scheme for a doubly iterative receiver, based on the minimum mean square 
error (MMSE) criteria (Biglieri et al., 2003). A new scheme has been presented 
with a significantly reduced complexity for a large number of transmit and 
receive antennas, compared to previous scheme proposed by Stefanov and 
Duman (Stefanov & Duman, 2001). Since the large number of antennas 
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increases the receiver complexity, a spatial interference canceling scheme is 
used, ensuring a good compromise between complexity and performance. 

A higher order modulation scheme gives the advantage that larger data 
rates and better spectral efficiency for radio communications systems are 
obtained. The disadvantage is that the performance of the iterative receivers 
depends critically on the size of the signal constellation and a high order 
modulation scheme is less robust to noise and interference. This leads to 
performance degradation. 

In Section 2 we recall the system model consisting of the transmitter 
and the receiver block scheme. In Section 3 we analyze 16–QAM and 64–QAM 
modulation schemes, specifying their characteristics, advantages and 
disadvantages.  In Section 4,  we  derive the soft estimates for 16–QAM and 
64–QAM modulations. In Section 5 we analyze the simulation results and 
Section 6 concludes the paper. 
 

2. System Model 
 
We consider the same mobile communication system as in 

(Rotopanescu et al., 2012) with Nt transmit and Nr receive antennas. The 
information bits are turbo-coded with coding rate Rc and block size of NtN 
symbols, where N is the number of successive transmissions from the transmit 
antennas, corresponding to a codeword. The input signal from the modulator 
output, is transmitted by antenna i, 1 ≤ i ≤ N, at each time instant. The spectral 
efficiency refers to the information rate that can be transmitted over a given 
bandwidth in a specific communication system. The spectral efficiency is equal 
to RcMNt, where Rc is the coding rate of the turbo code.  

The transmitter block scheme is presented in Fig. 1 and performs a 
coded modulation with bit interleaving and antenna diversity as described in 
(Caire et al., 1998). The receiver block scheme (Trifina et al., 2011) uses 
MMSE iterative algorithm and a linear MMSE interface (Rotopanescu et al., 
2012) and it is given in Fig. 2. The used turbo decoding algorithm is the Max-
Log-APP. 

 
Fig. 1 – Transmitter block scheme. 

 

 
Fig. 2 – Receiver block scheme. 
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The linear MMSE interface used by the receiver consists in a linear 
filter modeled by a matrix that minimizes the mean square error. The filtered 
signal is transmitted to the interference canceling block.  

The extrinsic soft estimates of transmitted bits are provided by the turbo 
decoder as a logarithm likelihood ratio (i.e. the logarithm of the ratio of the 
probabilities that the bit is either 1 or 0): 
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is the hyperbolic tangent function.  
 

3.  QAM Constellation 
 
QAM is extensively used as a modulation scheme for digital 

telecommunication systems. Arbitrarily high spectral efficiencies can be 
achieved with QAM by setting a suitable constellation size, limited only by the 
noise level and linearity of the communications channel.  

A motivation for the use of QAM comes from the fact that QAM 
schemes are more bandwidth efficient. Considering a higher-order QAM 
constellation, it is possible to transmit more bits per symbol. However, if the 
mean energy of the constellation remains the same, the points must be closer to 
each other and thus they are more susceptible to noise and other corruption.  

The QAM constellation points are normally arranged in a square grid 
with equal vertical and horizontal spacing, so that the most commonly used 
QAM constellations  have  a  number  of points equal to a power of 4, such as 
4–QAM, 16–QAM, 64–QAM, 256–QAM, and so on. In general, the number of 
points of the QAM modulation is 4m = 22m, where the number of the bits in each 
constellation  symbol is  M = 2m  (m is  an  integer).  In this paper, we use the 
4–QAM  modulation, thus the number of transmitted bits per symbol is M = 2 
(m = 1), 16–QAM, thus M = 4 (m = 2), and 64–QAM, with M = 6 (m = 3).  The 
points are represented in a complex plane having the in-phase component on the 
real axis and the quadrature component on the imaginary axis.  

For a general QAM constellation the used alphabet symbols are chosen 
of the form:  



34                  Ana-Mirela Rotopănescu, Lucian Trifina and Daniela Tărniceriu                                   
 

 

    QAM
2 22 1 2 1 , where 1,...,  and 1,...,
2 2

M M

p q j p q
               
      

.  (5) 

 
For 16–QAM, the symbols used are chosen from the set 
 

         16 QAM 1 , 1 3 , 3 , 3 3j j j j            
 
and the average energy is E16 – QAM = 10. 

 Fig. 3 presents the signal constellation for 16–QAM modulation using 
the Gray coded bit-mapping.  

 

  
 

Fig. 3 – Bit mapping for 16–QAM signal constellation. 
 
64–QAM is often used in digital cable television and cable modem 

applications. In the United States, 64–QAM is one of the mandated modulation 
schemes for digital cable. In the UK, 64–QAM is used for digital terrestrial 
television. 

For 64 – QAM, the symbols used are chosen from the set 
 

64 QAM

1 , 1 3 , 1 5 , 1 7 , 3 , 3 3 , 3 5 , 3 7 ,
5 , 5 3 , 5 5 , 5 7 , 7 , 7 3 , 7 5 , 7 7

j j j j j j j j
j j j j j j j j

 

                
                  

 
 
and the average energy is E16–QAM = 42. 

Fig. 4 presents the signal constellation for 64–QAM modulation using 
the Gray coded bit-mapping.  
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Fig. 4 – Bit mapping for 64–QAM signal constellation. 
 
Knowing this and having a 1/2 global rate,  the  spectral  efficiency is 

32 bits/s/Hz for 16–QAM modulation and 48 bits/s/Hz for 64–QAM 
modulation, in the case of 16 transmit antennas. 

 
4. Soft Estimates for 16–QAM and 64–QAM 

 
In (Trifina et al., 2011) the associations between the three and four bit 

sequences from the constellation and the complex values of symbols are given 
for 8–PSK and 16–PSK modulation, respectively. Here, we present the four and 
six bit sequences from the constellation and the complex values of symbols for 
16–QAM and 64–QAM modulation.  

From the above explanations, it is reasonably intuitive to guess that the 
scaling factor of 1 10  and 1 42  will be used in 16–QAM and 64–QAM 
constellations, respectively, for normalizing the average transmit power. 
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For 16–QAM the associations between the constellation bit sequences 
and the complex values of the symbols are: 

     
     
     
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     

0000 , 1000 Amp 1

0001 , 1001 Amp 3

0010 , 1010 Amp 1 3

0011 , 1011 Amp 3 3

0100 , 1100 Amp 1

0101 , 1101 Amp 3

0110 , 1110 Amp 1 3

0111 , 1111 Amp 3 3

j
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j

j

j
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  

  

 

where: Amp 1 10  . 
We assume that 2 1,i tc  , 2 ,i tc , 2 1,i tc  , 2 2,i tc   are the four bits in the 

sequence associated to the symbol.   
2 1,i tc   is the first bit and gives the sign of the real part of the complex 

number representing the soft estimates. If this bit is 0, then the sign of the real 
part is positive, and if the bit is equal to 1, the sign of the real part is negative. 
The second bit 2 ,i tc , gives the sign of the imaginary part of the complex 
number. If the bit is 0, then the sign of the imaginary part is positive, and if the 
bit is 1, the sign of the imaginary part is negative. The sign of the real and the 
imaginary parts of the soft estimates is estimated by the quantity 

 2 1,1 2 1i tP c    and  2 ,1 2 1i tP c  , respectively. If one of these bits is 1, the 
probability of that bit to be 1 is equal to 1 and if the bit is 0, then, the probability 
of that bit to be 1 is equal to 0. For example, if 2 1,i tc   = 0, then  2 1, 1 0i tP c     
and the sign of real part is given by the sign of the expression 

 2 1,1 2 1i tP c   = 1. Also, if 2 ,i tc = 1, then  2 , 1 1i tP c    and the sign of the 

imaginary part is given by the sign of  2 ,1 2 1i tP c  = -1.  

2 1,i tc   is the third bit and gives the amplitude of the imaginary part of 
the soft estimates. If the bit is 0, the amplitude of the imaginary part is equal to 
1. Otherwise, if the bit is 1, the amplitude is 3. In the same way, the fourth bit, 

2 2,i tc  , gives the amplitude of the real part of the soft estimates. If the bit is 0, 
the amplitude of the real part is equal to 1 and if the bit is 1, the amplitude is 3. 
The amplitude of the imaginary part and the amplitude of the real part are 
estimated by the quantities  2 1,1 2 1i tP c    and  2 2,1 2 1i tP c   , 

respectively. For example, if 2 1,i tc  = 1, then  2 1, 1 1i tP c    , meaning that the 
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amplitude of the imaginary part is  2 1,1 2 1 3i tP c    . Also, if 2 2,i tc  = 0 then 

 2 2, 1 0i tP c    and the amplitude of the real part is  2 2,1 2 1 1i tP c    . 
In this example, for 2 1,i tc  2 ,i tc 2 1,i tc  2 2,i tc  = 0110, the complex value is 

 1 1 1 3 1 3j j      . 
According to the above considerations and using eq. (3), the soft 

estimates for 16–QAM are given in the next formula: 
              , 2 1, 2 2, 2 , 2 1,Amp 1 2 1 1 2 1 1 2 1 1 2 1i t i t i t i t i tx P c P c j P c P c  

             

       2 1, 2 2, 2 , 2 1,Amp tanh tanh 2 tanh tanh 2
2 2 2 2

i t i t i t i tL c L c L c L c
j  
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                 

                          

(6) 

For 64–QAM, the associations between the constellation bit sequences 
and the complex values of the symbols are: 
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     
     

000000 , 100000 Amp 1

000001 , 100001 Amp 3

000010 , 100010 Amp 7

000011 , 100011 Amp 5

000100 , 100100 Amp 1 3

000101 , 100101 Amp 3 3

000110 , 100110 Amp 7 3

000111 , 100111 Amp 5 3
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010000 , 110000 Amp 1

010001 , 110001 Amp 3

010010 , 110010 Amp 7

010011 , 110011 Amp 5

010100 , 110100 Amp 1 3

010101 , 110101 Amp 3 3

010110 , 110110 Amp 7 3

010111 , 110111 Amp 5 3
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     

001000 , 101000 Amp 1 7

001001 , 101001 Amp 3 7

001010 , 101010 Amp 7 7

001011 , 101011 Amp 5 7

001100 , 101100 Amp 1 5

001101 , 101101 Amp 3 5

001110 , 101110 Amp 7 5

001111 , 101111 Amp 5 5
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     
     

011000 , 111000 Amp 1 7

011001 , 111001 Amp 3 7

011010 , 111010 Amp 7 7

011011 , 111011 Amp 5 7

011100 , 111100 Amp 1 5

011101 , 111101 Amp 3 5

011110 , 111110 Amp 7 5

0101111 , 111111 Amp 5 5
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where: Amp 1 42  . 
We assume that 2 1,i tc  , 2 ,i tc , 2 1,i tc  , 2 2,i tc  , 2 3,i tc   and 2 4,i tc  are the six bits 

in the sequence associated to the symbol.   
2 1,i tc   is the first bit and gives the sign of the real part of the complex 

number. If this bit is 0, the sign of the real part is positive and if the bit is 1, the 
sign of the real part is negative. The second bit 2 ,i tc , gives the sign of the 
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imaginary part of the complex number. If this bit is 0, the sign of the imaginary 
part is positive, otherwise, if the bit is 1, the sign of the imaginary part is 
negative. The sign of the real part is estimated by the sign of the quantity 

 2 1,1 2 1i tP c    and the sign of the imaginary part is estimated by the sign of 

the expression  2 ,1 2 1i tP c  . If one of these bits is 1, the probability of that 
bit to be 1 is equal to 1 and if the bit is 0, the probability of that bit to be 1 is 
equal to 0. For example, if 2 1,i tc  = 1, then  2 1, 1 1i tP c     and 

 2 1,1 2 1 1i tP c     , thus the sign of the real part is negative. Through the 
same analogy, if 2 ,i tc  = 1, the sign of the imaginary part is also negative. 

The amplitude of the real and imaginary part is given by a group of two 
bits. Thus, the third and fourth bit, 2 1,i tc   and 2 2,i tc  , give the amplitude of the 
imaginary part, and the fifth bit together with the sixth bit, 2 3,i tc  and 2 4,i tc  , give 
the amplitude of the real part. We denote the first and the second bit, 
respectively, from a group of two bits, by b1 and b2, respectively. Then, the 
amplitude value is given by the next formula: 

   1 0
1 1 21 2 2 1 2 1A P b P b b        .                        (7) 

 The XOR of two bits is 1 only when one of them is 0 and the other one 
is 1. Thus, the probability that XOR of the two bits is 1 is given by: 
 

     
       
         
       

1 2 1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 0 1 1 0

0 1 1 0

1 1 1 1 1 1

1 1 2 1 1 .

P b b P b b P b b

P b P b P b P b

P b P b P b P b

P b P b P b P b

          

      

        

      

                     (8) 

 In (8) we assumed that the two bits, 1b  and 2b , are independent. This 
assumption is valid, taking into account that the codeword at the turbo encoder 
output is interleaved by a random interleaver with large enough length. With 
(8), the amplitude in (7) becomes: 

4
          

         
       

1 0
1 1 2 1 2

1 1 2 1 2

1 2 1 2

1 2 2 1 2 1 1 2 1 1

1 4 1 2 1 2 1 4 1 1

              1 6 1 2 1 4 1 1 .

A P b P b P b P b P b

P b P b P b P b P b

P b P b P b P b

            
          

       

        9) 

 

As it was mentioned above, the third and fourth bit, 2 1,i tc   and 2 2,i tc  , 
give the amplitude of the imaginary part. If 2 1,i tc   is 0 and 2 2,i tc  is 0, then the 
amplitude of the imaginary part is equal to 1, but if 2 1,i tc   is equal to 0 and 

2 2,i tc  to 1, the amplitude of the imaginary part is equal to 3. Also, if 2 1,i tc   is 1 
and 2 2,i tc  is 0, then the amplitude of the imaginary part is equal to 7 and if 2 1,i tc   
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is 1 and 2 2,i tc  is 1, the amplitude of the imaginary part is equal to 5. The 
amplitude of the imaginary part is estimated by the quantity 

       2 1, 2 2, 2 1, 2 2,1 6 1 2 1 4 1 1i t i t i t i tP c P c P c P c              . For example, for 

2 1,i tc   = 1 and 2 2,i tc   = 0, the probabilities  2 1, 1 1i tP c     and  2 2, 1 0i tP c    , 
so that the amplitude of the imaginary part is 1 6 1 2 0 4 1 0 7        . 

In the same way, the fifth bit together with the sixth bit, 2 3,i tc  and 2 4,i tc  , 
give the amplitude of the real part. If 2 3,i tc   is equal to 0 and 2 4,i tc  to 0, then the 
amplitude of the real part is equal to 1 and if 2 3,i tc   is 0 and 2 4,i tc  is 1 then the 
amplitude of the real part is equal to 3. If 2 3,i tc   is equal to 1 and 2 4,i tc  is 0, then 
the amplitude of the real part is equal to 7 and if 2 3,i tc   is 1 and 2 4,i tc  is 1, then 
the amplitude of the real part is equal to 5. The amplitude of the real part is 
estimated by the quantity    2 3, 2 4,1 6 1 2 1i t i tP c P c       

   2 3, 2 4,4 1 1i t i tP c P c    . For example, for 2 3,i tc  = 0 and 2 4,i tc   = 1, the 

probabilities  2 3, 1 0i tP c     and  2 4, 1 1i tP c    , so that the amplitude of the 
real part is 1 6 0 2 1 4 0 1 3        . 

For the given example, for 2 1,i tc  2 ,i tc 2 1,i tc  2 2,i tc  2 3,i tc  2 4,i tc  = 111001, the 
complex number is    1 3 1 5 3 7j j        . 

According to the above considerations and using equation (8), the soft 
estimates for 64 - QAM are given in the next formula: 
           

           
, 2 1, 2 3, 2 4, 2 3, 2 4,

2 , 2 1, 2 2, 2 1, 2 2,

Amp 1 2 1 1 6 1 2 1 4 1 1

1 2 1 1 6 1 2 1 4 1 1

i t i t i t i t i t i t

i t i t i t i t i t

x P c P c P c P c P c

j P c P c P c P c P c

    

   

            

             

     2 1, 2 3, 2 4,Amp tanh 4 tanh 2 tanh
2 2 2

i t i t i tL c L c L c  
                                    

 

     2 , 2 1, 2 2,tanh 4 tanh 2 tanh .
2 2 2

i t i t i tL c L c L c
j  

                                 

         (10) 

 
5. Simulation Results 

 
In  this paper,  the simulations were performed for 4–QAM (M = 2), 

16–QAM (M = 4) and 64–QAM (M = 6), considering the same scenario as in 
(Rotopanescu et al., 2012). The turbo encoder uses a random interleaver of 
length Len = 2,080 for 4–QAM and 16–QAM modulations and of length 2,112 
for 64–QAM modulation.  

The global rate of the turbo code is 1/2 (with alternative puncturing of 
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parity bits), the forward and feedback generator polynomials are (5, 7) in octal 
form, and the interleaver between the turbo encoder and the serial to parallel 
converter is a random one. We considered a number of 16 transmit and 16 
receive antennas. The space-time codeword is a matrix with 16 rows (the 
number of transmit antennas) and 130 columns for  4–QAM, 65 columns for 
16–QAM, and 44 columns for 64–QAM. The number of distinct blocks with 
constant fading, F, is equal to 1. 

In all three cases, the turbo decoder uses the Max-Log-APP algorithm, 
described in (Trifina et al., 2011), and performs maximum 10 iterations. The 
stop criterion is genie stopper.  
 To cancel spatial interference, there was used a number of k = 0,  k = 1 
and k = 4 iterations. In (Trifina et al., 2011), an analysis was performed to 
evaluate the influence of the extrinsic information scaling coefficient denoted 
by “s” on the BER/FER performance of the system with QPSK modulation. It 
ranges from 0.6 to 1 with the step 0.05. As in (Rotopanescu et al., 2012), we 
consider the same extrinsic information scaling coefficient that performs the 
best FER and BER performance. For k = 0, we have considered the scaling 
coefficient s = 0.9, for k = 1, s = 0.8 and for k = 4, s = 0.75. 

The  Monte  Carlo  simulation  results  are  given  in  Figs. 5,…,7  for 
4–QAM, 16–QAM, 64–QAM, respectively, using k = 0, 1 and 4. These figures 
show the performance of the MMSE receiver through FER, versus signal-to-
noise ratio per bit ( 0bE N ). 

For every modulation, we observe from simulations that the coding gain 
increases proportionally with the number of double iterations k, as we will 
analyze further. Increasing the iteration number of the MMSE iterative decoder 
up to 4, leads to improved performances. In (Biglieri et al., 2005) it was shown 
that further increasing the number of iterations does not lead to additional 
performance improvement.  

Also, we observe from simulation results that for k = 4, the double 
iterations introduce relatively more errors compared to k = 1, and the 
supplementary coding gain obtained for k = 4 is smaller than the one achieved 
when k = 1.  

From simulation results, we observe the performance degradation. We 
can see that it is a great difference in FER performances between all three 
modulations.  There is a coding gain up to 6.44 dB for 4–QAM compared to 
16–QAM and up to 9.68 dB for 16–QAM compared to 64–QAM.   

For the same FER value, equal to 2  10–4, we analyze all three 
modulations for different number of iterations.  

From Table 1 we can see that for 4–QAM the supplementary coding 
gain is 3.31 dB for k =1 compared to k = 0 and 0.05 dB for k = 1 compared to k 
= 4. The coding gain is better for k = 1 compared to k = 4 at FER = 2  10–4 
since the error floor phenomenon is more pronounced for k = 4 than for k = 1. 
However at FER = 2  10–3, a 0.4 dB supplementary coding gain is achieved for 
k = 4, compared to the performance when k = 1, as it was shown in 
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(Rotopanescu et al., 2012) for  QPSK  modulation  (which  is  the  same  with 
4–QAM). 

For 16–QAM, the coding gain is 3.61 dB for k = 1 compared to k = 0 
and 0.32 dB for k = 4 compared to k = 1. Thus, the total coding gain achieved 
for 16–QAM is 3.93 dB. 

For 64–QAM, for the proposed FER value, the resulting coding gain is 
3.30 dB for k = 1 compared to k = 0 and 0.55 dB for k = 4 compared to k = 1, 
and the total coding gain for 64 – QAM is 3.85 dB.  

 
Table 1  

SNR Values (dB), for a Given Value FER = 2  10–4 

  SNR, [dB] k = 0 k = 1 k = 4 
4–QAM –2.29 –5.60 –5.55 

16–QAM 4.15 0.54 0.22 
64–QAM 13.52 10.22 9.67 

 
Because 4–QAM modulation is the same as QPSK, the FER 

performances for this modulation and different number of iterations are the 
same as by Rotopanescu et al., (2012), Fig. 6. Therefore, we do not give them 
separately in this paper. 

In Fig. 8 we analyze the FER performances for different number of 
iterations and 16–PSK and 16–QAM modulations. The results expressed in 
SNR  are  given  in  Table 2. The  used number of iterations is k = 0, k = 1 and 
k = 4, in order to see the performance difference between them. 

 
Table 2  

SNR Values (dB), for a Given Value FER = 2  10–4 

SNR, [dB] k = 0 k = 1 k = 4 
16–PSK 7.10 3.42 2.95 

16–QAM 4.15 0.54 0.22 
 
Assuming a value FER = 2  10– 4 , for  k = 0, the obtained coding gain 

is 2.95 dB for 16–QAM compared to 16–PSK. When k increases the 
supplementary coding gain slightly decreases. Thus, for the same FER value 
and k = 1 the coding gain is 2.88 dB for 16–QAM compared to 16–PSK. Also, 
for k = 4, for the proposed FER value the supplementary coding gain is 2.73 dB 
for 16–QAM compared to 16 – PSK. 

Also, comparing the results obtained for the same modulations but 
different number of iterations, we see that for 16–PSK the supplementary 
coding gain is 3.68 dB for k = 1 compared to k = 0 and 0.47 dB for k = 4 
compared to k = 1. As it was shown above, for 16–QAM the obtained coding 
gain is 3.61 dB for k = 1 compared to k = 0 and 0.32 dB for k = 4 compared to 
k = 1. 

In Fig. 9 we analyze the FER performances for 64–QAM and for 
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different number of iterations. The results are given in the last line of Table 1. 
We  consider the same value, FER = 2  10– 4.  The  coding  gain  obtained  for 
k = 1 compared to k = 0 is 3.30 dB and is larger than that obtained for k = 4 
compared to k = 1, which is 0.55 dB. This means that the supplementary coding 
gain obtained for k = 4 is smaller than the one achieved when k = 1, explained 
by the fact that for k = 4, the double iterations introduce relatively more errors 
compared to k = 1. 

 
Fig. 5 – FER performances for 4–QAM, 16–QAM and 64–QAM when k = 0. 

 

 
Fig. 6 – FER performances for 4–QAM, 16–QAM and 64–QAM when k = 1. 
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Fig. 7 – FER performances for 4–QAM, 16–QAM and 64–QAM when k = 4.  

 
 

 
Fig. 8 – FER performances for 16–PSK and 16–QAM for k = 0, 1, 4. 
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Fig. 9 – FER performances for 64–QAM  for k = 0, 1, 4. 

 
6. Conclusions 

 
In this paper we determined and explained the soft estimates needed for 

a doubly iterative decoder for space-time turbo codes on a quasi-static fading 
channel, considering 16–QAM and 64–QAM modulations, respectively. 
Transmitting more bits per symbol is possible if the order of modulation is 
increased. In this way, much higher data rates and better spectral efficiency are 
obtained for transmission communication systems. Hence, for 16 transmit 
antennas, the spectral efficiency is increased, from 16 bits/s/Hz for 4–QAM 
modulation to 32 bits/s/Hz for 16–QAM and to 48 bits/s/Hz for 64–QAM 
modulation. A disadvantage is that the increased order of QAM modulation 
introduces a degradation of the FER performances.  

The simulations were performed for a Max-Log-APP turbo decoding 
algorithm in a system using a spatial interference canceling interface (iterative 
MMSE receiver). We used a doubly-iterative decoding process, scaling both the 
extrinsic information of the turbo decoder and the information at the input of the 
interference canceling block. The number of iterations are k = 0,  k= 1 or k = 4 
used to cancel spatial interference. The scaling coefficient used for performing 
the simulations is s = 0.9 for k = 0, s = 0.8 for k = 1, and s = 0.75 for k = 4. 
Increasing the number of iterations the FER performances are improved. So, for 
4–QAM a  supplementary  coding  gain  up  to  3.31 dB can be achieved, for 
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16–QAM up to 3.93 dB and for 64–QAM up to 3.85 dB. The degradation of the 
FER performances is shown in simulation results, as we can see a large 
difference in coding gain between modulations, up to 6.44 dB for 4–QAM 
compared to 16–QAM and up to 9.68 dB for 16–QAM compared to 64–QAM.  
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ESTIMAŢII SOFT PENTRU DECODARE DUBLU ITERATIVĂ PENTRU 
MODULAŢIA 16 – QAM ŞI 64 – QAM 

 
(Rezumat) 

 
În scopul creşterii eficienţei spectrale, o modulaţie codată cu intercalarea biţilor 

poate fi combinată cu o modulaţie de ordin ridicat cum ar fi Phase Shift Keying (PSK) 
şi Quadrature Amplitude Modulation (QAM), îmbunătăţind astfel performanţa 
sistemului. În acest articol, derivăm şi explicăm estimaţii soft a decodorului dublu 
iterativ folosind codurile turbo spaţio – temporale şi un număr mare de antene de 
transmisie şi recepţie pentru modulaţia 16–QAM şi 64–QAM utilizată într-un sistem de 
comunicaţii mobile. 



 


