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Abstract. Bayesian networks proved to be a useful tool in power 
engineering for: availability and reliability studies, power quality analysis, risk 
evaluation, components monitoring and fault diagnosis. The paper is dedicated to 
reliability analysis of power systems and authors present details on how the 
method based on Bayes’ theorem of conditional probability can be used for 
reliability evaluation of different architectures of power system nodes and 
electricity supply chains.  The reliability block diagram (RBD), cut-sets or tie-
sets methods and event tree or failure tree techniques can be used to construct 
Bayesian networks based on corresponding real systems. 
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1. Introduction 
 

Systems reliability and availability are important fields where Bayesian 
Networks (BNs) proved their efficiency. Starting with Judea Pearl and F.V. 
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Jensen (2001) papers, which established the time-series modeling for Dynamic 
Bayesian Networks (DBN) and finishing with J.B. Dugan et al., (1992, 1993) 
works about dynamic fault tree models, there are many published papers about 
reliability of power systems, sub-systems and components. 

The interest of the scientific community in studying the field of 
Bayesian networks (BN) has increased significantly in the last two decades, due 
to the benefits these networks present compared to conventional modelling 
methods such as Markov Chain, failure trees or Petri networks. The paper 
(Weber et al., 2012) presents a brief analysis on these issues. 

 Chun Su and Ye-qun Fu developed the reliability analysis of wind 
turbines considering the influence of wind speed using Bayesian networks 
(Chun Su & Ye-qun Fu, 2014). An approximate inference algorithm combined 
with dynamic discretization of continuous variables is adopted to obtain the 
reliability index of wind turbine and its elements. L. Gao, Y. Zhou, C. Li and L. 
Huo authored a paper about the reliability assessment of distribution systems 
with distributed generation based on BNs (Chun Su & Ye-qun Fu, 2014). They 
developed a new method allowing not only computing the reliability indices of 
a distribution system but also evaluating the effect of each component or some 
components on the system reliability.  

Authors of paper Huo Limin et al., (2002), developed a method for a 
simple system’s reliability assessment based on fault tree method and minimal 
path set or minimal cut set. By using the inference theory of Bayesian networks, 
the system’s availability and outage probability can be computed, and the 
system weak component can be found by means of casual inference, diagnosis 
inference, and exculpation inference. 

Munteanu F. and Nemeş C. presented belief networks utilization for 
nodal power quality and availability assessment (Munteanu & Nemeş, 2012) 
starting from a detailed analysis about the correlation factor of the two 
renewable sources, solar and wind. A corresponding Bayesian model structure 
allowing assessing the nodal quality of supply from the power network 
including renewable energy sources as well as the main power network 
components was developed also. Same authors presented in paper Munteanu et 
al., (2016), details about the manner in which a design structure of power 
network or a nodal architecture can be modeled by a BN.  

A methodology to apply Bayesian networks to structural system 
reliability reassessment, with the incorporation of two important features of 
large structures: (1) multiple failure sequences, and (2) correlations between 
component-level limit states is presented by Mahadevan S. in (Mahadevan S., 
Zhang R., Smith N., 2001). Finally, an extremely useful book to understand the 
calculus background, the automatic reasoning in BN and how the probabilities 
are propagating in BN is that authored by Adrian Darwiche, (2009). 

 
2. The Background of Reliability Calculus for Automated Reasoning with 

Bayesian Networks 
 

Axioms of probability also known as Kolmogorov’s axioms provide the 
basis for (Bayesian) probability calculus: 
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1. ( ) ( ) 0P A P A    for any event SA   
2. ( ) 1P S   means the probability of a certain event. 
For any two mutually exclusive events A and B, the probability that 

either A or B occur is 
( or ) ( ) ( ) ( )P A B P A B P A P B     

It can be generalized and, if events A1, A2, …, An are pairwise mutually 
exclusive, then 

( ) . . . ( ) ( )
n n

i i n i
ii

P A P A P A P A 
    

 
  

According with these axioms the derived Bayes’ theorem can be 
exposed as 

( | ) ( | ) ( ) / ( )p a b p b a p b p a  
3. The fundamental multiplication rule of probability calculus is: 

                                    ( , ) ( | ) ( )p a b p a b p b                                       (1) 
in which p(a,b) is the probability of the joint event a∩b. 

From (1) we can write the Bayes’ theorem to calculate the posterior 
probability p(a|b), given prior probability p(a) and the likelihood of p(b|a), 
available if p(a) is real: 

                                      ( | ) ( )( , ) .
( )

p b a p ap a b
p b

                                       (2) 

The normalizing factor can be calculated with 

                               ( ) ( ) ( ) ( ) ( )p b p b a p a p b a p x                               (3) 

while p(a|b) + p(ā|b) = 1 is the condition used to compute p(b).  
The generalized form of Bayes’ theorem (Darwiche, 2009) is given by: 

                           

1

( ) ( )( )( ) ,
( ) ( ) ( )

i ii
i n

j j
j

p a b p bp a bp b a
p a p a b p b




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                             (4) 

where p(a) and p(b) ≥ 0 and p(bi) are mutually exclusive events. 
Another important rule in the domain of probabilistic calculus applied 

in Bayesian networks field is the rule of total probability (Kjerulff & Madsen, 
2013), based on axiom 2. Let P(A,B) be a joint probability distribution for two 
variables A and B defined on their domains Dom(A) = {a1,…,am} and Dom(B) = 
= {b1,…,bn} which are sets of mutually exclusive states of A and B. This rule is 
given by: 

 

      (5) 

 

Using (5), p(A) can be calculated from p(A,B): 

1
1

: ( ) ( , ) . . .. . ( , ) ( , ),
n

i i i n i j
j

i p a p a b p a b p a b


    
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n n
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 

 
  
 
                             (6) 

Eq. (6) can be reduced to 

                           
1

( ) ( , ) or ( ) ( , )
n

j
j j

p A p A b p A p A B


                             (7) 

described in Bayesian theory as marginalization out B of p(A,B) or elimination 
of B from p(A,B). 

In the followings we supposed the basics of Bayesian theory (Munteanu 
& Nemeş, 2012) in availability evaluation is known and more examples are 
given related to this subject, specifically to availability of power systems nodes 
architectures. 

 
3. Bayesian Networks for Availability Evaluation of Usual Architectures of 

Power Systems Nodes 
 

In a previous paper Ciobanu et al., (2016) the authors have presented 
the reliability analyses of two different nodal architectures.  

The current paper is dedicated to the analyses of a much more complex 
nodal architecture, the double busbar architecture and the double busbar with 
transfer bar architecture (bypass bar), using for modelling Bayesian network 
technique. 

The first nodal architecture, offering a high flexibility, has a double 
busbar and it is presented in Fig. 1. We considered the busbars also, even 
practically high reliable, to illustrate their importance on node availability. 

 

Fig. 1 – Double busbar architecture with components for node availability evaluation 
using Bayesian network technique. 
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The authors have established the corresponding tie-sets just for the left 
half of the diagram of Fig. 1 and they are shown in Fig. 2. The equivalent 
elements considered for tie-sets are: 

a) source A; 
b) transversal bus coupler C; 
c) busbar isolators E, F, G and H; 
d) bus M and bus section N; 
e) outgoing lines with switching components Q. 

Fig. 2 – Tie-sets for the left half of the double busbar architecture in Fig. 1. 

Supposing all components are two states (up and down) from reliability 
point of view with given probabilities, the corresponding Bayesian network is 
shown in Fig. 3.  

Fig. 3 – Bayesian network for the left side of the double busbar in Fig. 1. 

The network structure implies that the joint distribution has the product 
form, according to the chain rule, given by: 

 
( , , , , , , , , , 1, 2, 3, 4, )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( 1, 2, 3, 4) ( 1 , , , , )

( 2 , , , , ) ( 3 , , , , , , )

( 4 , , , , , , ).
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Components A and Q, series connected in the supply chain, are of a 
great importance for the nodal reliability.  

The Hugin Expert software (Hugin software package, version 8.2.) was 
used for some calculations and analysis. It generated the Bayesian network 
presented in Fig. 4 where the variables are the same as defined in Fig. 3 while 
edges are showing the causal relationship between variables. 

The values for marginal variables were taken according to (NTE 
005/06/00, 2006) and introduced as conditional probabilities tables (CPT).  For 
pA = 0.98, pC = 0.97, pE = pF = pG = pH = 0.99, pM = pN = 0.99  and  pQ = 0.97, 
the results are shown in Fig. 4. 

A sensitivity analysis presented in Fig. 5 shows a low influence of the 
transversal coupler (C) and busbars (M, N) on the node reliability while 
disconnectors (E, F, G, H), participating in every cut-set, are greatly influencing 
the node reliability. 

 

 
Fig. 4 – Probabilities flow in Bayesian network: input data for marginal nodes, 

calculated for tie-sets and for probability of supply of load at the end of L1 (left side of 
nodal diagram in Fig. 1). 
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Fig. 5 – Sensitivity analysis from reliability point of view of a double busbar node. 
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The great advantage of Bayesian network and of its formal 
representation using direct acyclic graphs (DAG’s) is due to the fact that it is 
easy to emphasis the subsystems and their probability distributions. As an 
example for the double busbar node architecture, Fig. 6 includes a 
supplementary node for reliability of the busbars, allowing for changes, 
viewing, and concluding on. As it can be seen, keeping the same causal 
relationship between random variables, the node probability of supply is 
identical to the one in Fig. 4 (pS = 0.9504). 

 

 
Fig. 6 – Bayesian network and the probability results for the double busbar node 

(M_N_reliability) revealing its conditional probability. 

Developing the cut-sets for the entire diagram in Fig. 1 it is not difficult 
excepting their total number of elements n = 19 conducting to 219 = 524,288 
states as the starting point to establish the cut-sets manually. Utilization of 
suitable software to generate the cut-sets automatically is a convenient solution 
for complex reliability block diagrams (RBD) 

Back-up supply represented by source B, connected using the 
longitudinal coupler P is the usual solution used to obtain a more reliable 
supply. 

Another usual solution considered in this paper for reliability analyses 
of supply is the nodal architecture including a transfer busbar depicted in Fig. 7. 

To be able to make a comparison between the first architecture and the 
current one, authors have established the minimal tie-sets for the same part of 
the diagram (the left half of the diagram in Fig. 7), and they are shown in Fig. 8. 

This time, authors have inserted new equivalent elements besides those 
already used in Fig. 2, and considered them for tie-sets as: 

a) transfer bar W; 
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b) transfer coupler S; 
c) transfer bar isolators C1, C2; 
d) transfer isolator U. 
Furthermore, it has been established the maximum number of elements 

considered for tie-sets to be 7, the only difference between the two diagrams 
remaining the structure of the nodal architecture. 

 

 
Fig. 7 – Double busbar architecture with transfer bar (bypass bar). 

 

Fig. 8 – Tie-sets for the left half of the double busbar architecture 
including a transfer bar with maximum 7 equivalent elements. 

 
To be able to develop the corresponding Bayesian network for fig. 8, it 

has been used the Hugin software, where the values for marginal variables were 
taken according to (NTE 005/06/00, 2006) and introduced as conditional 
probabilities tables (CPT) as shown in Fig. 9. 
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 Comparing the results from the two nodal architectures that have been 
analysed, it can be said that the inclusion of the transfer bar increases the 
success probability of the network from 0.9504 to 0.9781. 
 

 
Fig. 9 – Bayesian network for the left side of the double busbar architecture including a 

transfer bar in Fig. 7. 
 

4. Conclusions 
 

The Bayesian networks are an extreme versatile tool for automated 
reasoning for systems driven by probabilistic variables. They can be constructed 
according to the axioms and rules of probabilistic calculus and based on the 
generalized Bayes’ theorem. The power systems nodes availability can be 
assessed using Bayesian networks based on different techniques like cut-sets, 
tie-sets, fault trees, event trees or Markov chain method as converting the real 
technical systems to corresponding Bayesian networks. The authors presented 
the availability analysis of two usual nodal architectures as well as numerical 
case studies. 

Future work is to be dedicated to more complex systems modeling: 
multi state circuit-breakers, power transformers monitoring and fault diagnosis, 
assessment of availability electricity networks with distributed generation and 
high degree of renewables sources penetration, using Bayesian networks driven 
by data.  

 
Part of research from this article was presented at the 2016 International 

Conference and Exposition on Electrical and Power Engineering, EPE2016, event 
organized by the Faculty of Electrical Engineering, "Gheorghe Asachi" Technical 
University of Iaşi. 
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ANALIZA DISPONIBILITĂŢII ARHITECTURILOR NODALE UTILIZÂND 
REŢELE BAYESIENE 

 
(Rezumat) 

 
Reţelele Bayesiene s-au dovedit a fi un instrument important în domeniul 

electroenergetic pentru: analize de disponibilitate şi fiabilitate, analiza calitativă a 
energiei, evaluări de risc, monitorizarea componentelor şi diagnosticarea defectelor. 
Lucrarea este dedicată analizelor de fiabilitate ale sistemelor, autorii prezentând detalii 
în ceea ce priveşte modelarea bazată pe  teorema lui Bayes de probabilităţi condiţionate 
pentru diferite arhitecturi nodale din sistemul electroenergetic. 

Diagrama bloc de fiabilitate, metoda căilor minimale, metoda grupurilor de 
defectare, arbori de evenimente sau arbori de defectare sunt câteva dintre tehnicile care 
pot fi utilizate pentru construirea reţelelor Bayesiene corespunzătoare sistemelor reale. 


