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Abstract. The proliferation of evolutionary computation used to solve 
various technical problems requires increased performances, especially when 
real-time implementation is necessary. The paper proposes a MATLAB based 
test bench providing the essential tools for fine tuning the parameters of genetic 
algorithms. The capabilities of the designed platform are tested using an NP-hard 
problem: clustering algorithms for Wireless Sensor Networks, which uses 
genetic algorithms. The experimental results point out the importance of 
choosing the right parameters for a given application. Using the designed test 
bench, we can so report improvements of the algorithm behavior both from the 
obtained optimum result point of view and the convergence speed. 

 

Key words: genetic algorithm; parameter tuning; algorithm performance; 
experimental methodology. 

 
1. Introduction 

 
Genetic algorithms (GAs) represent a robust and flexible heuristic 

optimization technique inspired by natural evolution. They are particularly 
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suited to problems where traditional optimization techniques break down, either 
due to the particular structure of the search space (for example, absence of 
gradient information) or because the search operation is computationally 
infeasible. 

Recently the field of GAs as a means to find good solutions to problems 
that were otherwise computationally difficult has drawn increasing attention. 
Their possible application to a wide range of practical problems in science, 
engineering and industry raised several practical issues not anticipated by earlier 
theory (McCall, 2005).  

It has been noticed though that, in spite of the large amount of research 
in the field (Doughabadi et al., 2011; Eiben et al., 2011; Eiben et al, 2012; 
Moraes Barbosa et al., 2015) fine tuning of the parameters of a GA is a matter 
of testing as each application has a different behavior and is sensitive to 
particular parameters. 

This is the reason why a test bench for off-line fine tuning of the 
parameters of a GA dedicated to a special problem is absolutely necessary 
(Gunawan et al., 2011; Akbaripour et al., 2013). In the present paper we 
propose a MATLAB-based (MathWorks, 2017) solution for this subject. 
  We organize our paper as follows. In section 2, we present an overview 
of the genetic algorithms and the problematic of parameter tuning. In section 3, 
we describe the MATLAB implementation of the proposed test bench platform. 
In section 4, we illustrate the advantages of using adequate GA parameter 
tuning with a case study envisaging minimizing the communication distance in 
wireless sensor networks (WSN) (Al-Obaidy et al., 2015). Finally we will 
conclude or paper in Section 5, underlining further research directions. 

 
 

2. Genetic Algorithms and Parameter Tuning 
 

Genetic algorithms were devised to mimic the evolutionary behavior of 
biological systems. The approach was based on the remark that the genetic code 
of an individual defines his ability to survive and breed, usually referred as its 
fitness, and, this way, to transmit his code to succeeding generations. The 
objective of the species can be viewed in this perspective as a search for an 
optimum code for a specific environment. Modifications of the code appear 
during reproduction or due to mutation. All these demand setting up appropriate 
genetic operators (crossover, mutation etc) to drive a set of solutions to an 
optimum. 

While a GA evolves, it progresses through a series of populations, 
which succeed as so called generations, g. Each population Pg builds upon the 
previous population, Pg-1 in order to obtain progressively more fit individuals. 
This is accomplished by selecting individuals from Pg-1 and replacing them 
according to some criteria which take into consideration the fitness of 
individuals. This process is repeated while some termination criteria are not yet 
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achieved (such as a specific number of generations having passed or an 
individual with fitness above a certain threshold being found).  

The pseudocode description for a typical GA is given in Fig. 1 (Kramer, 
2017). 

 
Fig. 1 − Genetic algorithm structure. 

 
Parameter tuning can be considered as a special case of algorithm 

design. As shown in Eiben et al., (2012), in recent years, an increasing number 
of publications were devoted to the case studies on parameter tuning. The 
outcome of tuning varies from increasing algorithm performance to decreasing 
the computational effort. 

One of the main challenges for GA designers is that the parameter 
values influence to a large extend the performance of the algorithm. A good 
parameter values choice can improve by significant orders of magnitude the 
behavior of the algorithm.  

Literature (Eiben et al., 2012) mentions two relevant performance 
measures for evolutionary algorithms in general: one regarding solution quality 
and one regarding algorithm speed or search effort (referring to any measure of 
computational effort such as the number of fitness evaluations or CPU time).  

There are different combinations of fitness and time that can be used to 
define algorithm performance in one single run. For instance (Eiben et al., 
2012): 

a) Given a maximum execution time (computational effort), algorithm 
performance is defined as the best fitness at termination. 

b) Given a minimum/maximum fitness level, algorithm performance is 
defined as the execution time (computational effort) needed to reach it. 

c) Given a maximum execution time (computational effort) and a 
minimum/maximum fitness level, algorithm performance is defined through the 

begin 
initialize g to 0 
initialize members of P0 to random values 
evaluate fitness of members of P0 
while (termination condition not reached) loop 

increment g 
select parents from Pg-1 to compose Pg 
perform crossover on parents of Pg 
perform mutation on population Pg 
evaluate fitness of members of Pg 

end loop 
end 
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Boolean notion of success: a run succeeds if the given fitness is reached within 
the given time; otherwise it fails. 

The parameters which influence the performances of a GA can be split 
into two categories (Eiben et al., 2007; Eiben et al., 2011; Eiben et al., 2012): 
qualitative parameters and quantitative parameters. The qualitative parameters 
envisage the representation mode (binary-coded, real-coded etc.), the type of 
crossover (one-point, two-point, uniform, arithmetic, heuristic etc.), the type of 
mutation (bit-flip boundary, non-uniform, uniform, Gaussian etc.), the parent 
selection method (tournament, Roulette Wheel Selection, Stochastic Universal 
Sampling, Tournament Selection etc.). Among the quantitative parameters one 
can enumerate: mutation rate (pm), crossover rate (pc), population size. 

For example the problem of how to choose an adequate population size 
deals with two antagonistic facts (Sun, 2011): if the population is too small, it is 
not likely that the GA will find a good solution for the problem at hand. On the 
contrary if the population is too large, the GA usually takes a long time in 
processing solutions. There are articles (Haupt, 2000) reporting that the choice 
of population size and mutation rate can cause the run time of the GA to vary by 
several orders of magnitude. The results of this investigation show that a small 
population size and relatively large mutation rate can be far superior to the 
combination large population sizes and low mutation rates that is used by most 
of the papers. In (Sastry et al., 2000) the author affirms that the convergence 
time was found to be independent of the population size provided that it was 
above some threshold value.  

Even though many studies have reported indications of how to choose 
the adequate parameters for GA (Haupt, 2000; Ridge et al., 2006; Witt, 2008; 
Sun, 2011; Rajakumara et al., 2013; Moraes Barbosa et al., 2015), there is no 
general recipe valid for any kind of application using GA. In fact, one of the 
common conclusion of these studies can be resumed as follows: “Do tune your 
evolutionary algorithm with a tuner algorithm” (Eiben & Smit, 2012). 
 

3. MATLAB Implementation of GA Test Bench  
 
In order to increase the efficiency of the GA parameter tuning, we have 

devised a MATLAB-based platform devoted to perform as a test bench for the 
set-up evaluation. 

The Genetic Algorithm Toolbox (MathWorks, 2017) is a collection of 
routines, written mostly as m-files, which provides a set of versatile tools for 
implementing a wide range of GA methods and operators. 

The main components of this platform are: 
a) Population representation and initialization – the population 

individuals are represented as binary strings and they can be initialised with 
random values from {0,1} n-space.  

b) Population evaluation – a fitness value can be calculated as a 
measure of the quality of each individual. The fitness scaling adjusts the fitness 
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values before the selection of the parents for the next generation. This scaling 
affects the diversity of the population.  

c) Selection – better solutions have higher chance to be selected as 
parents for the next generation solutions. There are different selection methods: 

c1) Uniform – the individuals are randomly selected from a uniform    
distribution and they are used for parents selection. 

c2) Roulette – this method simulate a roulette wheel technique: assign 
each individual part of the wheel and then spin wheel (use a random number) to 
select the individual. 

c3) Tournament – select randomly several individuals from the 
population and then the best one of them is selected to be a parent. 

d) Reproduction – controls how the next generation is created. The 
amount of elitism and the fraction of the next generation are specified: 

d1) Elite count specifies the number of individuals in the current 
generation that are guaranteed to survive to the next generation. 

d2) Crossover fraction specifies the fraction of individuals in the next 
generation that are created by crossover, except the elite children. This value is 
between 0 and 1. A crossover fraction of 0 means that all the children are 
mutation children. A crossover fraction of 1 means that all the children except 
the elite individuals are crossover children. The default value for crossover 
fraction is 0.8. 

d3) Mutation – decides if an individual should be mutated or not, based 
on the mutation rate. For bit string population type, the mutation function is 
uniform, flipping bits randomly with a uniform distribution along the string. 

e) Crossover – recombine pairs of individuals with given probability to 
produce offspring. The following methods are implemented in MATLAB:  

e1) Single point: a crossover point is randomly set. The binary string 
from the beginning to the crossover point is copied from the first parent in the 
first offspring and then the others are copied from the second parent. The 
second offspring is created in a similar way, starting from the second parent. 

e2) Two point: in this case two crossover points are randomly set. The 
binary string from the beginning to the first crossover point is copied in the first 
offspring from the first parent, the part from the first to the second crossover 
point is copied from the other parent and the rest is copied from the first parent 
again. 

e3) Scattered: creates a random binary vector and the selects from the 
first parent the bits where the vector is a 1, and from the second parent selects 
the bits where the vector is a 0. Then combine the bits to form the first child. 

f) Stopping criteria – determines what causes the algorithm to terminate. 
It could be related to the number of generations, to the time limit, to the best 
fitness value or to other characteristics of the population, e.g. diversity. 

The developed MATLAB-based platform allow us to perform a variety 
of tests using the command line to control the parameters as: population size, 
crossover and mutation probabilities, crossover and mutation operators, 
stopping condition. 
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A display routine has been implemented in order to plot the results in 
each generation and for different values of the controlled parameters given as 
input in the command line.  In this way, the experimental results can show how 
the fitness value can be improved by using a various set of solutions and how 
the selected parameters influence the performance of the system. 

Users can set their own batch tests varying simultaneously both 
qualitative (sequentially choosing different genetic operators) and quantitative 
parameters (stepwise modifying values for mutation rate, crossover probability 
and so on). 

 
4. Case Study: Tuning GA Parameters for WSN Communication Distance 

Optimization  
 
In order to demonstrate the effectiveness of the designed test bench we 

have chosen a NP-hard problem envisaging the clustering of WSNs (Ahmed, 
2015). It has been investigated and proved (Shrestha et al., 2007) that grouping 
sensors into clusters and designating a so called cluster-head to take over the 
transmission of data from its assigned sensor nodes to the sink increases the 
life-time of the network by saving energy. 

Given an arbitrary sensor node distribution, we use a GA to optimize 
the number of clusters and sensor connections (clusters structure). The output of 
the optimization process will be the number of clusters and the structure of each 
cluster. Previous approaches for clustering have considered the number of 
clusters as a priori known. 

For the selected case study, an individual is encoded as an n-bit string, 
where n represents the number of sensors. A bit of 1 denotes a cluster-head, 
while a bit of zero denotes a regular sensor. Each regular node is connected to a 
cluster-head. 

The initial population consists of randomly generated individuals.  
In order to generate a cluster, for each regular node, a deterministic 

method based on finding its nearest cluster-head is used. It was proved in (Al-
Obaidy et al., 2015) that the energy consumption in a WSN is minimized if the 
communication distance in minimized; the shorter the transmission distance, or 
the lower the number of cluster-heads, the higher the fitness value of an 
individual is.  

In the context of the GA approach, we will use the term Fitness to 
measure the adequacy of a certain sensor distribution. So: 

Fitness = w ∗ (D − distancei ) + (1 − w) ∗ (n − Hi ),             (1) 

where: D is the total distance of all nodes to the sink, distancei – the sum of the 
distances from regular nodes to their respective cluster-heads plus the sum of 
the distances from all cluster-heads to the sink, while n is the total number of 
nodes. In order to evaluate the contribution of each factor, distances or number 
of cluster-heads, to the energy consumption, a predefined weight factor, w, is 
introduced.  
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 For the illustration of the advantages offered by the proposed test 
bench, we have considered a random distribution of 100 sensor nodes and the 
associated sink deployed on an area of 7,000  7,000 units. 
 We evaluate the total communication distance defined as the sum of 
distances between each node and the sink, for the case of non-clustered 
networks and, respectively, as the sum of distances between each cluster head 
and the sink plus the sum of distances between a cluster head and each of its 
assigned sensor nodes. 
 The overall behavior of the GA-based clustering algorithm for a WSN 
as compared with the unclustered behavior is presented in Fig. 2. 

We present the results obtained for a population of 500 individuals, 
crossover probability 0.8, mutation probability, scattered crossover and 
Stochastic Uniform selection. 

In Fig. 2 a we present the network structure without clustering 
(Total_communication_distance = 4.2595e + 05 units) and in Fig. 2 b the 
clusters structure obtained using  a  GA  (Total_communication_distance_Cl = 
= 1.0932e + 05 units). One can easily notice the drastic reduction of the 
communication distance when using clusterization. 

For the sensor deployment in Fig. 2 we have performed different tuning 
experiments using the designed test bench.  

In this study, one-point, two-point and scattered crossovers are tested as 
crossover operators. It is to be noticed that, as expected, two-point crossover 
and scattered crossover represent an enhancement over one-point crossover in 
terms of supplying more diversity in the population. 

In Table 1 we present the influence of the population size in 
conjunction with different crossover operators. We have used Stochastic 
Uniform selection method, mutation probability 0.01 and crossover probability 
0.8. 
 

Table 1 
Influence of the Population Size for Different Crossover Operators 

Population_size  Crossover Total_comm_distance_Cl No_of_gen 

100 One-point 1.6201 e+05 70 

100 Two-point 1.5473 e+05 66 

100 Scattered 1.4264 e+05 59 

500 One-point 1.2097 e+05 60 

500 Two-point 1.1097 e+05 59 

500 Scattered 1.0932 e+05 55 

1,000 One-point 1.3401 e+05 61 

1,000 Two-point 1.2373 e+05 60 

1,000 Scattered 1.1164 e+05 55 
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 a 
 

b 
Fig. 2 – a – WSN without clustering; b – WSN with clustering. 
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It is to be noticed that for the small values of the population size (100 
represents the number of sensor nodes), the algorithm has medium 
performances as compared with the 500 case. Moreover, as predicted, there is a 
threshold over which increasing the population size does not improve the 
algorithm behaviour, as illustrated when the value 1,000 is used. That 
observation has major impact when real time implementation is envisaged – 
limiting the search space speeds up the runtime duration. 
 Another interesting aspect is that increasing the mutation probability, 
and so the diversity, we can obtain good results even from small population 
sizes. We illustrate this behaviour in Table 2, where the crossover probability is 
considered constant, 0.8, and scattered crossover operator and Stochastic 
Uniform were used as selection method. 
 An important qualitative parameter is also the selection method. In 
Table 3 we present the result obtained for a population of 500 individuals, 
crossover probability 0.8, mutation probability and Stochastic Uniform, 
respectively Tournament selection.  
 

Table 2 
Influence of the Population Size and Probability of Mutation for Different Crossover 

Operators 

Population_size  Crossover Mutation 
Probability 

Total_comm_distance_
Cl 

No_of_ 
gen 

100 One-point 0.05 1.5711 e+05 75 

100 Two-point 0.05 1.3343 e+05 69 

100 Scattered 0.05 1.2374 e+05 65 

500 One-point 0.01 1.2097 e+05 60 

500 Two-point 0.01 1.1097 e+05 59 

500 Scattered 0.01 1.0932 e+05 55 
 

Table 3 
Influence of the Selection Method for Different Crossover Operators 

Selection method  Crossover Total_comm_distance_Cl No_of_gen 

Stochastic Uniform Single-point 1.2097 e+05 60 

Stochastic Uniform Two-point 1.1097 e+05 59 

Stochastic Uniform Scattered 1.0932 e+05 55 

Tournament Single-point 1.3401 e+05 70 

Tournament Two-point 1.2373 e+05 66 

Tournament Scattered 1.1164 e+05 59 
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Using the proposed fine-tuning platform and so being able to select the 
right values for the GA we have succeeded to outperform the results reported in 
(Al-Obaidy et al., 2015). For example while, for a given sensor configuration, 
their algorithm converged in 100 generations, while we have obtained the same 
results in only 55 generations. 
 

5. Conclusions 
 

The MATLAB-based test bench for fine tuning of the parameters of 
GAs proposed in this paper proved to be efficient, leading to notable 
improvements in both the resulted optimum value and the convergence speed. 

In the context of increasing the performances of GAs, another research 
direction to have in view is that envisaging their parameter control. In case of 
parameter control, the parameter values are changing during the run, so one 
needs initial parameter values and suitable control strategies. The control 
approach can be deterministic, adaptive, or self-adaptive.  
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PLATFORMA DE TEST BAZATĂ PE MATLAB UTILIZATĂ PENTRU 
ALEGEREA ADECVATĂ A PARAMETRILOR ALGORITMILOR GENETICI 

 
(Rezumat) 

 
Proliferarea calculului evolutiv utilizat în rezolvarea diferitelor probleme 

tehnice a impus creşterea performanţelor acestora, în mod special dacă implementarea 
lor în timp real este nesesară. Lucrarea de faţă propune o platformă de test bazată pe 
MATLAB ce oferă instrumentele de test nesesare pentru alegerea adecvată a 
parametrilor algoritmilor genetici. Capabilităţile  platformei proiectate au fost testate pe 
o problemă NP-hard şi anume un algoritm de clusterizare a reţelelor de senzori wireless, 
ce utilizează algoritmi genetici. Rezultatele experimentale au demonstrat importanţa 
alegerii corespunzătoare a parametrilor pentru o aplicaţie dată. Astfel, folosind 
platforma de test proiectată, putem raporta creşerea performanţelor algoritmului atât din 
punctual de vedere al otimului obţinut, cât şi din cel al vitezei de convergenţă. 



 


