
BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI
Publicat de

Universitatea Tehnică „Gheorghe Asachi” din Iaşi
Volumul 62 (66), Numărul 4, 2016

Secţia
ELECTROTEHNICĂ. ENERGETICĂ. ELECTRONICĂ

MATLAB-BASED TEST BENCH FOR GENETIC ALGORITHM
PARAMETER TUNING

BY

ADRIANA SÎRBU* and IOLANDA-ELENA ALECSANDRESCU

Technical University “Gheorghe Asachi” of Iaşi,
 Faculty of Electronics, Telecommunications and Information Technology

Received: November 16, 2016
Accepted for publication: December 5, 2016

Abstract. The proliferation of evolutionary computation used to solve
various technical problems requires increased performances, especially when
real-time implementation is necessary. The paper proposes a MATLAB based
test bench providing the essential tools for fine tuning the parameters of genetic
algorithms. The capabilities of the designed platform are tested using an NP-hard
problem: clustering algorithms for Wireless Sensor Networks, which uses
genetic algorithms. The experimental results point out the importance of
choosing the right parameters for a given application. Using the designed test
bench, we can so report improvements of the algorithm behavior both from the
obtained optimum result point of view and the convergence speed.

Key words: genetic algorithm; parameter tuning; algorithm performance;
experimental methodology.

1. Introduction

Genetic algorithms (GAs) represent a robust and flexible heuristic

optimization technique inspired by natural evolution. They are particularly

*Corresponding author: e-mail: asirbu@etti.tuiasi.ro

48 Adriana Sîrbu and Iolanda-Elena Alecsandrescu

suited to problems where traditional optimization techniques break down, either
due to the particular structure of the search space (for example, absence of
gradient information) or because the search operation is computationally
infeasible.

Recently the field of GAs as a means to find good solutions to problems
that were otherwise computationally difficult has drawn increasing attention.
Their possible application to a wide range of practical problems in science,
engineering and industry raised several practical issues not anticipated by earlier
theory (McCall, 2005).

It has been noticed though that, in spite of the large amount of research
in the field (Doughabadi et al., 2011; Eiben et al., 2011; Eiben et al, 2012;
Moraes Barbosa et al., 2015) fine tuning of the parameters of a GA is a matter
of testing as each application has a different behavior and is sensitive to
particular parameters.

This is the reason why a test bench for off-line fine tuning of the
parameters of a GA dedicated to a special problem is absolutely necessary
(Gunawan et al., 2011; Akbaripour et al., 2013). In the present paper we
propose a MATLAB-based (MathWorks, 2017) solution for this subject.
 We organize our paper as follows. In section 2, we present an overview
of the genetic algorithms and the problematic of parameter tuning. In section 3,
we describe the MATLAB implementation of the proposed test bench platform.
In section 4, we illustrate the advantages of using adequate GA parameter
tuning with a case study envisaging minimizing the communication distance in
wireless sensor networks (WSN) (Al-Obaidy et al., 2015). Finally we will
conclude or paper in Section 5, underlining further research directions.

2. Genetic Algorithms and Parameter Tuning

Genetic algorithms were devised to mimic the evolutionary behavior of
biological systems. The approach was based on the remark that the genetic code
of an individual defines his ability to survive and breed, usually referred as its
fitness, and, this way, to transmit his code to succeeding generations. The
objective of the species can be viewed in this perspective as a search for an
optimum code for a specific environment. Modifications of the code appear
during reproduction or due to mutation. All these demand setting up appropriate
genetic operators (crossover, mutation etc) to drive a set of solutions to an
optimum.

While a GA evolves, it progresses through a series of populations,
which succeed as so called generations, g. Each population Pg builds upon the
previous population, Pg-1 in order to obtain progressively more fit individuals.
This is accomplished by selecting individuals from Pg-1 and replacing them
according to some criteria which take into consideration the fitness of
individuals. This process is repeated while some termination criteria are not yet

Bul. Inst. Polit. Iaşi, Vol. 62 (66), Nr. 4, 2016 49

achieved (such as a specific number of generations having passed or an
individual with fitness above a certain threshold being found).

The pseudocode description for a typical GA is given in Fig. 1 (Kramer,
2017).

Fig. 1 − Genetic algorithm structure.

Parameter tuning can be considered as a special case of algorithm

design. As shown in Eiben et al., (2012), in recent years, an increasing number
of publications were devoted to the case studies on parameter tuning. The
outcome of tuning varies from increasing algorithm performance to decreasing
the computational effort.

One of the main challenges for GA designers is that the parameter
values influence to a large extend the performance of the algorithm. A good
parameter values choice can improve by significant orders of magnitude the
behavior of the algorithm.

Literature (Eiben et al., 2012) mentions two relevant performance
measures for evolutionary algorithms in general: one regarding solution quality
and one regarding algorithm speed or search effort (referring to any measure of
computational effort such as the number of fitness evaluations or CPU time).

There are different combinations of fitness and time that can be used to
define algorithm performance in one single run. For instance (Eiben et al.,
2012):

a) Given a maximum execution time (computational effort), algorithm
performance is defined as the best fitness at termination.

b) Given a minimum/maximum fitness level, algorithm performance is
defined as the execution time (computational effort) needed to reach it.

c) Given a maximum execution time (computational effort) and a
minimum/maximum fitness level, algorithm performance is defined through the

begin
initialize g to 0
initialize members of P0 to random values
evaluate fitness of members of P0
while (termination condition not reached) loop

increment g
select parents from Pg-1 to compose Pg
perform crossover on parents of Pg
perform mutation on population Pg
evaluate fitness of members of Pg

end loop
end

50 Adriana Sîrbu and Iolanda-Elena Alecsandrescu

Boolean notion of success: a run succeeds if the given fitness is reached within
the given time; otherwise it fails.

The parameters which influence the performances of a GA can be split
into two categories (Eiben et al., 2007; Eiben et al., 2011; Eiben et al., 2012):
qualitative parameters and quantitative parameters. The qualitative parameters
envisage the representation mode (binary-coded, real-coded etc.), the type of
crossover (one-point, two-point, uniform, arithmetic, heuristic etc.), the type of
mutation (bit-flip boundary, non-uniform, uniform, Gaussian etc.), the parent
selection method (tournament, Roulette Wheel Selection, Stochastic Universal
Sampling, Tournament Selection etc.). Among the quantitative parameters one
can enumerate: mutation rate (pm), crossover rate (pc), population size.

For example the problem of how to choose an adequate population size
deals with two antagonistic facts (Sun, 2011): if the population is too small, it is
not likely that the GA will find a good solution for the problem at hand. On the
contrary if the population is too large, the GA usually takes a long time in
processing solutions. There are articles (Haupt, 2000) reporting that the choice
of population size and mutation rate can cause the run time of the GA to vary by
several orders of magnitude. The results of this investigation show that a small
population size and relatively large mutation rate can be far superior to the
combination large population sizes and low mutation rates that is used by most
of the papers. In (Sastry et al., 2000) the author affirms that the convergence
time was found to be independent of the population size provided that it was
above some threshold value.

Even though many studies have reported indications of how to choose
the adequate parameters for GA (Haupt, 2000; Ridge et al., 2006; Witt, 2008;
Sun, 2011; Rajakumara et al., 2013; Moraes Barbosa et al., 2015), there is no
general recipe valid for any kind of application using GA. In fact, one of the
common conclusion of these studies can be resumed as follows: “Do tune your
evolutionary algorithm with a tuner algorithm” (Eiben & Smit, 2012).

3. MATLAB Implementation of GA Test Bench

In order to increase the efficiency of the GA parameter tuning, we have

devised a MATLAB-based platform devoted to perform as a test bench for the
set-up evaluation.

The Genetic Algorithm Toolbox (MathWorks, 2017) is a collection of
routines, written mostly as m-files, which provides a set of versatile tools for
implementing a wide range of GA methods and operators.

The main components of this platform are:
a) Population representation and initialization – the population

individuals are represented as binary strings and they can be initialised with
random values from {0,1} n-space.

b) Population evaluation – a fitness value can be calculated as a
measure of the quality of each individual. The fitness scaling adjusts the fitness

Bul. Inst. Polit. Iaşi, Vol. 62 (66), Nr. 4, 2016 51

values before the selection of the parents for the next generation. This scaling
affects the diversity of the population.

c) Selection – better solutions have higher chance to be selected as
parents for the next generation solutions. There are different selection methods:

c1) Uniform – the individuals are randomly selected from a uniform
distribution and they are used for parents selection.

c2) Roulette – this method simulate a roulette wheel technique: assign
each individual part of the wheel and then spin wheel (use a random number) to
select the individual.

c3) Tournament – select randomly several individuals from the
population and then the best one of them is selected to be a parent.

d) Reproduction – controls how the next generation is created. The
amount of elitism and the fraction of the next generation are specified:

d1) Elite count specifies the number of individuals in the current
generation that are guaranteed to survive to the next generation.

d2) Crossover fraction specifies the fraction of individuals in the next
generation that are created by crossover, except the elite children. This value is
between 0 and 1. A crossover fraction of 0 means that all the children are
mutation children. A crossover fraction of 1 means that all the children except
the elite individuals are crossover children. The default value for crossover
fraction is 0.8.

d3) Mutation – decides if an individual should be mutated or not, based
on the mutation rate. For bit string population type, the mutation function is
uniform, flipping bits randomly with a uniform distribution along the string.

e) Crossover – recombine pairs of individuals with given probability to
produce offspring. The following methods are implemented in MATLAB:

e1) Single point: a crossover point is randomly set. The binary string
from the beginning to the crossover point is copied from the first parent in the
first offspring and then the others are copied from the second parent. The
second offspring is created in a similar way, starting from the second parent.

e2) Two point: in this case two crossover points are randomly set. The
binary string from the beginning to the first crossover point is copied in the first
offspring from the first parent, the part from the first to the second crossover
point is copied from the other parent and the rest is copied from the first parent
again.

e3) Scattered: creates a random binary vector and the selects from the
first parent the bits where the vector is a 1, and from the second parent selects
the bits where the vector is a 0. Then combine the bits to form the first child.

f) Stopping criteria – determines what causes the algorithm to terminate.
It could be related to the number of generations, to the time limit, to the best
fitness value or to other characteristics of the population, e.g. diversity.

The developed MATLAB-based platform allow us to perform a variety
of tests using the command line to control the parameters as: population size,
crossover and mutation probabilities, crossover and mutation operators,
stopping condition.

52 Adriana Sîrbu and Iolanda-Elena Alecsandrescu

A display routine has been implemented in order to plot the results in
each generation and for different values of the controlled parameters given as
input in the command line. In this way, the experimental results can show how
the fitness value can be improved by using a various set of solutions and how
the selected parameters influence the performance of the system.

Users can set their own batch tests varying simultaneously both
qualitative (sequentially choosing different genetic operators) and quantitative
parameters (stepwise modifying values for mutation rate, crossover probability
and so on).

4. Case Study: Tuning GA Parameters for WSN Communication Distance

Optimization

In order to demonstrate the effectiveness of the designed test bench we

have chosen a NP-hard problem envisaging the clustering of WSNs (Ahmed,
2015). It has been investigated and proved (Shrestha et al., 2007) that grouping
sensors into clusters and designating a so called cluster-head to take over the
transmission of data from its assigned sensor nodes to the sink increases the
life-time of the network by saving energy.

Given an arbitrary sensor node distribution, we use a GA to optimize
the number of clusters and sensor connections (clusters structure). The output of
the optimization process will be the number of clusters and the structure of each
cluster. Previous approaches for clustering have considered the number of
clusters as a priori known.

For the selected case study, an individual is encoded as an n-bit string,
where n represents the number of sensors. A bit of 1 denotes a cluster-head,
while a bit of zero denotes a regular sensor. Each regular node is connected to a
cluster-head.

The initial population consists of randomly generated individuals.
In order to generate a cluster, for each regular node, a deterministic

method based on finding its nearest cluster-head is used. It was proved in (Al-
Obaidy et al., 2015) that the energy consumption in a WSN is minimized if the
communication distance in minimized; the shorter the transmission distance, or
the lower the number of cluster-heads, the higher the fitness value of an
individual is.

In the context of the GA approach, we will use the term Fitness to
measure the adequacy of a certain sensor distribution. So:

Fitness = w ∗ (D − distancei) + (1 − w) ∗ (n − Hi), (1)

where: D is the total distance of all nodes to the sink, distancei – the sum of the
distances from regular nodes to their respective cluster-heads plus the sum of
the distances from all cluster-heads to the sink, while n is the total number of
nodes. In order to evaluate the contribution of each factor, distances or number
of cluster-heads, to the energy consumption, a predefined weight factor, w, is
introduced.

Bul. Inst. Polit. Iaşi, Vol. 62 (66), Nr. 4, 2016 53

 For the illustration of the advantages offered by the proposed test
bench, we have considered a random distribution of 100 sensor nodes and the
associated sink deployed on an area of 7,000  7,000 units.
 We evaluate the total communication distance defined as the sum of
distances between each node and the sink, for the case of non-clustered
networks and, respectively, as the sum of distances between each cluster head
and the sink plus the sum of distances between a cluster head and each of its
assigned sensor nodes.
 The overall behavior of the GA-based clustering algorithm for a WSN
as compared with the unclustered behavior is presented in Fig. 2.

We present the results obtained for a population of 500 individuals,
crossover probability 0.8, mutation probability, scattered crossover and
Stochastic Uniform selection.

In Fig. 2 a we present the network structure without clustering
(Total_communication_distance = 4.2595e + 05 units) and in Fig. 2 b the
clusters structure obtained using a GA (Total_communication_distance_Cl =
= 1.0932e + 05 units). One can easily notice the drastic reduction of the
communication distance when using clusterization.

For the sensor deployment in Fig. 2 we have performed different tuning
experiments using the designed test bench.

In this study, one-point, two-point and scattered crossovers are tested as
crossover operators. It is to be noticed that, as expected, two-point crossover
and scattered crossover represent an enhancement over one-point crossover in
terms of supplying more diversity in the population.

In Table 1 we present the influence of the population size in
conjunction with different crossover operators. We have used Stochastic
Uniform selection method, mutation probability 0.01 and crossover probability
0.8.

Table 1
Influence of the Population Size for Different Crossover Operators

Population_size Crossover Total_comm_distance_Cl No_of_gen

100 One-point 1.6201 e+05 70

100 Two-point 1.5473 e+05 66

100 Scattered 1.4264 e+05 59

500 One-point 1.2097 e+05 60

500 Two-point 1.1097 e+05 59

500 Scattered 1.0932 e+05 55

1,000 One-point 1.3401 e+05 61

1,000 Two-point 1.2373 e+05 60

1,000 Scattered 1.1164 e+05 55

54 Adriana Sîrbu and Iolanda-Elena Alecsandrescu

 a

b
Fig. 2 – a – WSN without clustering; b – WSN with clustering.

Bul. Inst. Polit. Iaşi, Vol. 62 (66), Nr. 4, 2016 55

It is to be noticed that for the small values of the population size (100
represents the number of sensor nodes), the algorithm has medium
performances as compared with the 500 case. Moreover, as predicted, there is a
threshold over which increasing the population size does not improve the
algorithm behaviour, as illustrated when the value 1,000 is used. That
observation has major impact when real time implementation is envisaged –
limiting the search space speeds up the runtime duration.
 Another interesting aspect is that increasing the mutation probability,
and so the diversity, we can obtain good results even from small population
sizes. We illustrate this behaviour in Table 2, where the crossover probability is
considered constant, 0.8, and scattered crossover operator and Stochastic
Uniform were used as selection method.
 An important qualitative parameter is also the selection method. In
Table 3 we present the result obtained for a population of 500 individuals,
crossover probability 0.8, mutation probability and Stochastic Uniform,
respectively Tournament selection.

Table 2
Influence of the Population Size and Probability of Mutation for Different Crossover

Operators

Population_size Crossover Mutation
Probability

Total_comm_distance_
Cl

No_of_
gen

100 One-point 0.05 1.5711 e+05 75

100 Two-point 0.05 1.3343 e+05 69

100 Scattered 0.05 1.2374 e+05 65

500 One-point 0.01 1.2097 e+05 60

500 Two-point 0.01 1.1097 e+05 59

500 Scattered 0.01 1.0932 e+05 55

Table 3
Influence of the Selection Method for Different Crossover Operators

Selection method Crossover Total_comm_distance_Cl No_of_gen

Stochastic Uniform Single-point 1.2097 e+05 60

Stochastic Uniform Two-point 1.1097 e+05 59

Stochastic Uniform Scattered 1.0932 e+05 55

Tournament Single-point 1.3401 e+05 70

Tournament Two-point 1.2373 e+05 66

Tournament Scattered 1.1164 e+05 59

56 Adriana Sîrbu and Iolanda-Elena Alecsandrescu

Using the proposed fine-tuning platform and so being able to select the
right values for the GA we have succeeded to outperform the results reported in
(Al-Obaidy et al., 2015). For example while, for a given sensor configuration,
their algorithm converged in 100 generations, while we have obtained the same
results in only 55 generations.

5. Conclusions

The MATLAB-based test bench for fine tuning of the parameters of
GAs proposed in this paper proved to be efficient, leading to notable
improvements in both the resulted optimum value and the convergence speed.

In the context of increasing the performances of GAs, another research
direction to have in view is that envisaging their parameter control. In case of
parameter control, the parameter values are changing during the run, so one
needs initial parameter values and suitable control strategies. The control
approach can be deterministic, adaptive, or self-adaptive.

REFERENCES

Ahmed Z. H., An Improved Genetic Algorithm using Adaptive Mutation Operator for
the Quadratic Assignment Problem, Proc. of the 38th Internat. Conf. on
Telecommunications and Signal Processing (TSP), July 9-11, 2015, Prague,
Czech Republic, 1324-1330.

Akbaripour H., Masehian E., Efficient and Robust Parameter Tuning for Heuristic
Algorithms, Internat. J. of Industrial Engng. & Production Res., 24, 2, 143-150
(2013).

Al-Obaidy M., Ayesh A., Energy Efficient Algorithm for Swarmed Sensors Networks,
Sustainable Computing: Informatics and Systems, 5, 54-63 (2015).

Doughabadi M. H., Bahrami H., Kolahan F., Evaluating the Effects of Parameters
Setting on the Performance of Genetic Algorithm Using Regression Modeling
and Statistical Analysis, J. of Industrial Engng., Univ. of Tehran, Special Issue,
61-68 (2011).

Eiben A.E, Smit S. K., Evolutionary Algorithm Parameters and Methods to Tune Them,
in Hamadi Y., Monfroy E., Saubion F. (Eds.) Autonomous Search, Springer,
15-36, 2012.

Eiben A.E., Michalewicz Z., Schoenauer M., Smith J., Parameter Control in
Evolutionary Algorithms, Parameter Setting in Evolutionary Algorithms,
Studies in Computational Intelligence 54, Springer Verlag, 19-46 (2007).

Eiben A.E., Smit S.K., Parameter Tuning for Configuring and Analyzing Evolutionary
Algorithms, Swarm and Evolutionary Computation, 1, 19–31 (2011).

Gunawan A., Lau H.C., Lindawati L., Fine-Tuning Algorithm Parameters Using the
Design of Experiments Approach, Proc. of the 5th Internat. Conf. Learning and
Intelligent Optimization, LION 5, Rome, Italy, January 17-21, 2011, 278-292,
2011.

Haupt R., Optimum Population Size and Mutation Rate for a Simple Real Genetic
Algorithm that Optimizes Array Factors, Proc. of IEEE AP-S Internat. Symp.,
July 2000.

Bul. Inst. Polit. Iaşi, Vol. 62 (66), Nr. 4, 2016 57

Kramer O., Genetic Algorithm Essentials, Springer Internat. Publ., AG 2017.
McCall J., Genetic Algorithms for Modelling and Optimisation, J. of Computational and

Applied Mathematics, 184, 205-222 (2005).
Moraes Barbosa E.B., França Senne E.L., Silva M.B., Improving the Performance of

Metaheuristics: An Approach Combining Response Surface Methodology and
Racing Algorithms, Internat. J. of Engng. Mathematics, Article ID 167031,
2015.

Petrovski A., Brownlee A., McCall J., Statistical Optimisation and Tuning of GA
Factors, The 2005 IEEE Congress on Evolutionary Computation, 2005.

Rajakumara B.R., Georgeb A., APOGA: An Adaptive Population Pool Size Based
Genetic Algorithm, AASRI Procedia, 4, 288-296 (2013).

Reed P., Minsker B., Goldberg D.E., Designing a Competent Simple Genetic Algorithm
for Search and Optimization, Water Resources Research, 36, 12, 3757-3761
(2000).

Ridge E., Kudenko D., Sequential Experiment Designs for Screening and Tuning
Parameters of Stochastic Heuristics, Workshop on Empirical Methods for the
Analysis of Algorithms, Reykjavik, Iceland, 2006.

Sastry K., Goldberg D.E., On Extended Compact Genetic Algorithm, IlliGAL Report
No. 2000026, April, 2000.

Shrestha A., Xing L., A Performance Comparison of Different Topologies for Wireless
Sensor Networks, IEEE Conf. on Technol. for Homeland Security, 280-285,
2007.

Sun W., Population Size Modeling for GA in Time-Critical Task Scheduling, Internat. J.
of Foundations of Computer Sci., 22, 3, 603-620 (2011).

Witt C., Population Size Versus Runtime of a Simple Evolutionary Algorithm,
Theoretical Computer Sci., 403, 104-120 (2008).

* * * Global Optimization Toolbox User's Guide, The MathWorks, Inc., 2017.

PLATFORMA DE TEST BAZATĂ PE MATLAB UTILIZATĂ PENTRU
ALEGEREA ADECVATĂ A PARAMETRILOR ALGORITMILOR GENETICI

(Rezumat)

Proliferarea calculului evolutiv utilizat în rezolvarea diferitelor probleme

tehnice a impus creşterea performanţelor acestora, în mod special dacă implementarea
lor în timp real este nesesară. Lucrarea de faţă propune o platformă de test bazată pe
MATLAB ce oferă instrumentele de test nesesare pentru alegerea adecvată a
parametrilor algoritmilor genetici. Capabilităţile platformei proiectate au fost testate pe
o problemă NP-hard şi anume un algoritm de clusterizare a reţelelor de senzori wireless,
ce utilizează algoritmi genetici. Rezultatele experimentale au demonstrat importanţa
alegerii corespunzătoare a parametrilor pentru o aplicaţie dată. Astfel, folosind
platforma de test proiectată, putem raporta creşerea performanţelor algoritmului atât din
punctual de vedere al otimului obţinut, cât şi din cel al vitezei de convergenţă.

