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Abstract. A relatively new method of investigation, the visibility graph, 
allows us to compute the fractal dimension of a chaotic signal using the time 
series that it represents. The method was applied to some simple nonlinear 
circuits, known for their chaos-generating properties that were not previously 
characterized by means of the fractal dimension. 
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1. Introduction 
 

The nonlinear circuits that exhibit chaotic behaviour were studied from 
several points of view: from their minimalist implementation using electronic 
components (Siriburanon et al., 2010; Srisuchinwong et al., 2012) to their 
properties as generators of chaotic signals characterized by Lyapunov exponents 
(Radwan et al., 2003), phase portraits and rarely, different measures of their 
dimension, usually the Kaplan-Yorke one as a consequence to the knowledge of 
the Lyapunov exponents.  

An interesting and quite large class of circuits of this kind was 
described and studied in (Sprott, 2000) and later on in (Sprott, 2011). They were 
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based on the so called “jerk” equation, sometimes named model, as in 
(Srisuchinwong et al., 2012). The name comes from mechanics and denotes the 
third derivative of the space (or the first derivative of the acceleration) seen as a 
time function. It was introduced and defined by Schot in (Schot, 1978).  

There are not so many criteria that allow choosing among different 
chaos generators: e.g. previous work in (Sprott, 2000) is intended mostly as a 
review of possibilities for a generic jerk differential equation and therefore the 
main topic lays in describing the circuits that are associated, their conform 
behaviour to the theoretical background and eventually, computing Lyapunov 
exponents for certain cases of interest. That is why it seems interesting enough 
to try the characterization of the generated signals by fractal dimension, a 
typical measure for chaotic signals that is seldom used, mostly because of the 
simple way of computing another different dimension, the Kaplan-Yorke one, 
when the Lyapunov coefficients are known (Frederickson et al., 1983). This 
becomes more encouraging since the introduction of the concept of visibility 
graph, a tool that permits mapping of the time series to associated graphs and 
consequently, to use the graph theory to characterise the time series from 
different points of view (Lacasa, 2008). 

Knowing the fractal dimension of the signal that is generated by a 
nonlinear circuit is important when it is intended for random number generators, 
like the one described in (Yalcin et al., 2004) and when one is interested to 
evaluate the self-similarity of the time series that represents the signal, trying to 
determine how much chaos and how much noise is embedded. It also may be a 
good answer to the question “what is the difference between chaotic circuits that 
are implemented according to the same type of equation?” since those that were 
already devised for such purposes all have positive Lyapunov exponents and 
from this point of view, exhibit chaotic behaviour in a way or another. In this 
manner, a supplementary criterion may be used. Also characterizing the self-
similarity of a signal allows us to use two different scales in order to get rid of 
the noise in one of them if the existence of the self-similarity was previously 
proven by means of the fractal dimension.  

The paper is organised as follows: first there is a short presentation of 
the visibility graph and its main definitions, intended for the newcomers in the 
field, next the algorithm that allows computing the fractal dimension by means 
of the visibility graph is reviewed for short. The third section is devoted to the 
general description of the circuits that are implemented according to the jerk 
equation and finally the results concerning the fractal dimension of the chosen 
circuits are presented, along with several conclusions in the end. 

 
2. The Visibility Graph – a Link between Time Series and Graphs 

 
The visibility graph was defined in (Lacasa, 2008a, b) and later on 

developed as horizontal visibility graph (Luque et al., 2009). It was initially 
intended to explore the possibility of using the already well defined tools of the 
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graph theory in order to extract features that were hard to compute by other 
means, especially when dealing with nonlinear phenomena. When using the 
tools for chaos characterization there were several instances that benefited from 
the method: EEG signal characterization and feature extraction (Zhu et al., 
2012), autism (Ahmadlou et al., 2012), economics (Wang et al., 2012), social 
(Fan et al., 2012) and earth sciences (Telesca et al., 2012) to quote just a few of 
the papers that appeared during the same year. 

The rules that map a time series into its associated visibility graph are 
the following: 1) each element of the time series uniquely represents a node of 
the visibility graph and 2) two nodes are connected by an edge if and only if 
they are able to ”see” each other. The definitions are illustrated in Fig. 1 for a 
time series denoted {xn}, and a few generically chosen points, from i to i + 6. It 
is worth noticing in the graph representation that the horizontally drawn lines 
correspond to the obvious fact that consecutive samples see each other and as of 
matter of consequence, successive nodes are linked together by default. 

 

 
 

Fig. 1 – The rules that generate the visibility graph of the {xn} time series and 
its associated graph. 

 
The algorithm involved in mapping the time series to its associated 

visibility graph may be formulated analytically for the second rule, according to 
Fig. 2, since the number of nodes equals the number of the samples of the time 
series and this defines them from the beginning. 

The equation of the line that passes through two different points of 
coordinates (i, xi) and (j, xj) with generic variables (p, x) is the following (see 
Fig. 2): 

)( ip
ij
xx

xx ij
i 




 . (1) 
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Obviously, if the nodes i and j see each other, for any value of k 
between i and j, the following inequality holds true for the coordinates (k, xk):  

)( ik
ij
xx

xx ij
ik 




 . (2) 

                         
 

 
Fig. 2 – The dotted line, equation (1), that links two samples of 

coordinates (i, xi) and (j, xj) that see each other. 
 
If two nodes see each other (i.e. inequality (2) is true for any node in 

between), then the two nodes are connected by an edge. For every graph there is 
an adjacency matrix (in this case symmetrical) for which we  can define 
accordingly, for each i ≠ j: 
  

, ,

1 ( , ) connected;
0 otherwise.i j j i

i j
a a


  


 (3) 

 

The main diagonal of the adjacency matrix is filled with zeroes due to 
the above rule. Also, the elements that are adjacent to the main diagonal, both in 
the lower part and in the upper part of the matrix are ones since two consecutive 
nodes are visible to each other: 

 

.11,1,   iiii aa  (4) 
 

Essentially, the above mapping allows determining the fractal 
dimension directly from the adjacency matrix if one defines in advance the 
order of the nodes. This is the number of edges that are connected to a certain 
node. This definition allows computing the probability of the distribution of the 
edges for the nodes of the graph which may be expressed by (Lacassa et al., 
2008): 

 
 kkP )( , (5) 

 

with k denoting the order of the node and λ the power of the scale-freeness. 
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According to (Lacassa et al., 2008) the fractality of the studied time 
series is expressed by the slope of the line defined by the graph of  P(k) versus 
k–1, both represented in logarithmic scales, which represents the fractal 
dimension of the time series, FD. This way of computing the fractal dimension 
is far less difficult than the usual algorithms (Higuchi, Katz or Petrosian, see 
(Esteller et al., 2001) for a thorough survey). 

In this study, the algorithm of Lacassa was slightly adapted from the 
following points of view: 1) since every node of the visibility graph has an edge 
linked with its neighbor, the case k ≤ 2 was not taken into account when the 
slope of the line in logarithmic coordinates (i.e. the fractal dimension, FD) was 
computed and 2) as stated in (Ahmadlou et al., 2012), considering only samples 
of the time series taken at different time intervals, computing for each instance 
the fractal dimension (for the new, smaller time series)  and considering the 
average, the outcome is a better estimate of the fractal dimension FD, than each 
individual result. This seems reasonable, even from statistical point of view. 

There is another decision that has to be made, according to the 
algorithm above: where to stop with the time interval so that there is an obvious 
condition that allows exiting the algorithm. The natural one, to stop at the end 
of the time series is quite impractical when dealing with long time series, so the 
one suggested in (Ahmadlou et al., 2012) may be taken into account: the 
algorithm stops when two consecutive values for the fractal dimension are 
different by less than a certain amount, denoted ε. During the simulations a 
value of ε = 10–2 was considered satisfactory, providing a good compromise 
between the precision and the computing time needed to complete the algorithm 
on a usual personal computer. 

 
3. The Jerk Equation and the Nonlinear Circuits that Implement It 

 
 
The name of the equation when used in electrical engineering was 

introduced in (Sprott, 1997) and is essentially a differential equation of the third 
degree: 

 

0),,,( 


xxxxF . (6) 

 
In what follows we shall use the form and the notations from (Sprott, 

2000), where the equation is written: 
 

)(xGxxAx 


, (7) 

 
with A = 0.6, while G(x) is a nonlinear function of x. To solve it in an easier 
way, the above equation may be written as a system of first degree differential 
equations: 
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There are several possibilities to generate chaos choosing a certain 

function for G(x). Most of them were presented and implemented in (Sprott, 
2000) and further developed and studied in (Siriburanon et al., 2010). To 
illustrate the method and to allow the possibility of comparisons with other 
results, the following six different G(x) functions were chosen to be 
characterised by the fractal dimension FD computed by means of the visibility 
graph: 

1( ) 1 ,G x x   (9) 

2 ( ) 2.7sin ,G x x   (10) 

3( ) 2.7cos ,G x x   (11) 

4 ( ) 2.2( 2tanh ),G x x x   (12) 

5( ) 1 6max( ,0),G x x   (13) 

6( ) 1.2 sign( ).G x x x   (14) 
 
One important issue when one tries to compute the fractal dimension 

(FD) by means of the above presented method is the fact that due to the 
transient process at the beginning of the simulation, materialized in a somewhat 
slow evolution, there is a certain possibility to encounter a very long process 
until the precision imposed is reached. To overcome this, after all the values 
were generated, the time series was cut in half and only the second part of it was 
used in computations. The time considered for investigation was one second. 

Another reason to use the visibility graph when computing the fractal 
dimension is that there is no need for a huge number of samples (some authors 
use just a few hundred). In this case just 2000 samples were used to be sure that 
the desired precision is reached for the fractal dimension; that means the whole 
time series had 4000 samples. Other values, both smaller and greater, were used 
but they did not prove to determine decisive changes in the final results.  

 
4. Results and Conclusions 

 
As already acknowledged, the fractal dimension is supposed to be 

smaller than the Kaplan-Yorke dimension computed when the largest Lyapunov 
exponents are known. Fortunately the largest Lyapunov exponents for the 
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chosen functions  are known (Sprott, 2000) and therefore it is possible to 
compare the outcome of the visibility graph method with an already computed 
value, the Kaplan-Yorke dimension. 

The results are presented in the Table 1. 
 

Table 1 
The Kaplan-Yorke Dimension vs. the Fractal Dimension 

z = f(x) G(x) K-Y FD 

 

 
1( ) 1G x x   

 

2.057 2.19 

 

2 ( ) 2.7sinG x x   2.103 1.891 

 

3( ) 2.7cosG x x   2.103 1.594 
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4 ( ) 2.2( 2tanh )G x x x   2.269 0.974 

 

 
5 ( ) 1 6max( ,0)G x x 

 
2.134 2.29 

 

 
6 ( ) 1.2 sign( )G x x   

 
2.523 1.184 

  
 

There are two cases in which the computed fractal dimension is slightly 
greater than its Kaplan-Yorke counterpart, for the first and the fifth functions 
and this is unusual. The main guess to explain this is that the transient process 
was not entirely finished; this assumption was made knowing the numbers of 
iterations (i.e. fractal dimensions) that were carried out to reach the 0.01 
difference imposed between two consecutive ones. Usually this number was 
five to seven but in the above cases these figures were almost double. For the 
sake of equivalence, the time and the number of samples were kept the same for 
all cases and hence the differences. 



Bul. Inst. Polit. Iaşi, Vol. 63 (67), Nr. 1, 2017                                        29                                         
 

It is also easy to observe from the graphs that there is a closed link 
between the computed fractal dimension and the evolution of the z = f(x) 
function: a greater “fill” of the surface of the graph is reflected into a grater 
fractal dimension. This observation gives a hint concerning the candidates for 
random numbers generators among the studied circuits. 

To conclude, it is worth noticing a few facts: 1) the number of the 
samples of the time series that represents the signal may be lower than in most 
other computations dealing with the same subject; 2) one must be sure that the 
transients were discarded from the chosen values of the time series to obtain a 
valid result; 3) the method of the visibility graph is able to be a good indicator 
for the chaotic behaviour of a certain nonlinear circuit through the fractal 
dimension; 4) it is also possible to discern between noise and chaos utilizing the 
computing values but this is beyond the purpose of this paper.  

Further work may reveal the links between the fractal dimension and 
the influence of the components of a circuit that implements the jerk equation in 
different cases of implementation and the way to extract noise from a chaotic 
signal.  
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ASUPRA DIMENSIUNII FRACTALE A SEMNALELOR GENERATE DE UNELE 

CIRCUITE NELINIARE 
 

(Rezumat) 
 

Sunt prezentate noi rezultate obţinute în ceea ce priveşte caracterizarea unor 
semnale haotice cu ajutorul dimensiunii fractale. Aceasta este calculată prin metoda 
grafului de vizibilitate care se dovedeşte expeditivă şi exactă în condiţiile în care este 
luat în considerare regimul tranzitoriu iniţial, inerent funcţionării oricărui circuit. 


