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Abstract. An offline analysis based on phase synchronization measures is 
proposed. Phase locking value, phase lag index, weighted phase lag index are 
applied in order to discriminate between motor imagery tasks in a brain 
computer interface paradigm based on Mu rhythm. The pairs of channels with 
relevant features for classification were selected applying statistical tests. The 
purpose was to evaluate the phase synchronization based channel selection. 
Discrimination between right hand motor imagery and left hand motor imagery 
was evaluated with linear discriminant analysis, quadratic discriminant analysis, 
Mahalanobis distance classifier, k nearest neighbor analysis and support vector 
machine. The results obtained indicate that phase synchronization indexes can be 
used as online methods for motor imagery paradigms. 
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1. Introduction 

 
Brain computer interface (BCI) is a system designed to translate brain 

activities into commands for an external device (computer, prosthesis). BCI 
provides a communication way for people with severe motor disabilities. The 
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most popular sensory signal used for BCI is the scalp-recorded 
electroencephalogram (EEG), because is a non-invasive measurement, is simple 
to use and implies low costs. EEG based BCI detects changes that appear in the 
brain activity while a person is performing mental tasks. During a mental 
activity (e.g. planning, control, execution or imagination of movement), changes 
in the frequency band 8 -12 Hz (Mu rhythm) or 12 -30 Hz (Beta rhythm) 
appears on EEG recordings. Movement or even preparation and imagining a 
movement triggers an event that desynchronizes the electrical activity of the 
neurons in the motor areas resulting in a loss of amplitude of the waves detected 
by the EEG. When the state of the user is reversed to the idle state, the electrical 
activity of the neurons is again synchronized in the opposite hemisphere of the 
brain. These events are called Event-Related Desynchronization (ERD) and 
Event-Related Synchronization (ERS) (Pfurtscheller & Neuper, 2001). 

The EEG signals are characterized by amplitude and phase information.  
Common spatial pattern (CSP), power spectral density (PSD) (Lazar, 

2005) has been applied to extract amplitude distinctive features from EEG in 
different mental states (Wolpaw et al., 2002).  

The phase synchronization is a fundamental neural mechanism which 
can provide significant and discriminative features for BCI systems. Phase 
content can characterize the cognitive processes like memory or attention. Phase 
synchronization occurs in two brain regions when the oscillatory phases in these 
regions are correlated. It has been noticed that the phase synchronization of the 
relaxation period is different from the phase synchronization from activity 
period and therefore it can be used in BCI applications (Gonuguntla et al., 
2013). 

Two types of synchronizations are distinguished in the brain activity: 
local scale synchronization (between signals acquired by electrodes placed in 
the same motor area) and large scale synchronization (between signals acquired 
by electrodes placed in the primary motor area and by electrodes placed in the 
additional motor area) (Wang et al., 2006). 

Methods that explore phase information instead of amplitude one have 
been applied in motor imagery paradigms: the phase locking value (PLV) 
(Lachaux et al., 1999), that uses the relative phase between signals to measure 
the phase-synchronization, the phase lag index (PLI) (Stam et al., 2007) as a 
potential improvement of the PLV and the weighted phase lag index (wPLI) 
(Vinck et al., 2011) for increasing the capacity to detect true changes in phase 
synchronization. 

An off-line analysis is performed in order to detect changes in the large-
scale synchronization by means of PLV, PLI and wPLI which appear during 
motor imagery focussed on Mu rhythm and large scale synchronization.  

Section II presents the methodology used in analysis. It consists in 
presenting the methods used in assessing the phase synchronization, features 
extraction and classification. The results obtained for the database used are 
presented in Section III and Section IV concluded the paper. 
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2. Methodology  

 
A. Methods 
The phase locking value (PLV), the phase lag index (PLI) and the 

weighted phase lag index (wPLI) are used for measuring the phase 
synchronization between two signals  x(t) and y(t). 

PLV measures the synchronization in the time domain and has been 
used for analysing EEG signals recorded during motor imagery tasks. 

PLV characterizes the stability of the phase difference between 
instantaneous phases φx(t) and φy(t) of signals x(t) and y(t), respectively, using 
the formula (Gysels & Celka, 2004): 

  jPLV ,e t             (1) 

     txtyt    and .  is average operator. 

When the averaging is performed on trials, the PLV is defined by the 
expression: 
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where: N is the number of EEG samples of the trial. 
When the phase difference is constant, PLV is equal to 1. If the phase 

difference is randomly distributed in the interval [0, 2π], the phase difference 
follows a normal distribution, so that PLV is equal to 0. 
Instantaneous phases φx(t) and φy(t) are calculated in order to obtain PLV. 
Instantaneous phases are determined using Hilbert transform (Le Van Quyen et 
al., 2001).  

The Hilbert transform of a signal s(t) is given by the equation (Gabor, 
1946): 
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where: p.v. is the Cauchy principal value. The analytical signal is characterized 
by: 
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The instantaneous phase is calculated by the formula: 
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The phase lock index can be determined from the asymmetry of the 
instantaneous phase difference distribution ∆φ(t), k = 1,…,N between two 
signals: 

  PLI sign kt    ,     (6) 

where: sign is the signum function and .  denotes the average over the time. 
The PLI ranges between 0 and 1. A PLI of zero indicates either no 

coupling or coupling with a phase difference ∆φ centered around [0,π]. A PLI of 
1 indicates perfect phase locking at a value of ∆φ different from [0,π] (Stam et 
al., 2007). 

The weighted phase lag index is calculated using the formula: 

  
 

   
 

sign
PLI ,

I X I X I X
w

I X I X
        (7) 

where: I(X) is the imaginary component of the cross spectrum between two 
signals x(t) and y(t). 
 The values of the wPLI are ranged between 0 and 1, where 1 means 
total synchronization. Synchronization is defined by    sign 1 1P I X   or 

   sign 1 1P I X    , where .P  denotes probability (Vinck et al., 2011). 

 
B. Dataset 
 
The dataset used is provided by Dr. Allen Osman in BCI Competition 

2002 (Osman, 2001). The recordings were acquired according to informed 
consent standards (Toader & Toader, 2012). 

The EEGs are recorded from 59 electrodes placed on the scalp 
according to the International System 10-20 and referenced to the left mastoid. 
The signals are sampled at 100 Hz.  

Well trained subjects were asked to imagine left or right hand 
movement and to relax (each subject executed 180 trials, 90 trials for imagery 
of the left hand movement and 90 trials for imagery of the right hand 
movement). Each trial epoch lasted 6 seconds. 

The signals acquired from 9 electrodes (FC3, FCZ, FC4, CP3, CPZ, CP4, 
C3, CZ and C4) over the sensorimotor area are considered for further processing. 

 
C. EEG signal processing 

 
EEG signals are loaded in Matlab and segments for each mental task are 

extracted. Four sets of data are formed: the right hand motor imagery, the 
relaxation succeeding the right hand motor imagery, the left hand motor 
imagery, the relaxation succeeding the left hand motor imagery. Signals are 
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band pass filtered in 8,…,12 Hz frequency band (Mu rhythm) with a finite 
impulse response filter of 50th order, in order to avoid phase distortion. 

In order to compute the phase synchronization, instantaneous phase of 
the signals is calculated using Hilbert transform. The Hilbert transform is 
performed for all EEG channels.  

Three electrodes from the supplementary motor imagery area, FCZ , CPZ 
and CZ, three electrodes from the left hemisphere, FC3, C3, CP3 and three 
electrodes from the right hemisphere FC4, C4, CP4 are used. Nine combinations 
for the right hemisphere (FCZ-FC4, FCZ-C4, FCZ-CP4, CZ-FC4, CZ-C4, CZ-CP4, 
CPZ-FC4, CPZ-C4, CPZ-CP4) and nine combinations for the left hemisphere 
(FCZ-FC3, FCZ-C3, FCZ-CP3, CZ-FC3, CZ-C3, CZ-CP3, CPZ-FC3, CPZ-C3, CPZ-
CP3) are formed (18 pairs of channels) as listed in Fig. 1.  

 
Fig. 1 – The pairs of channels formed with FCZ, CZ and CPZ. 

 
The difference between PLVs of the motor imagery period and the 

relaxation period is computed for all pairs of electrodes. Two new sets of data 
are formed: the difference between PLVs corresponding to the left motor 
imagery tasks and the difference between PLVs corresponding to the right 
motor imagery tasks. Statistical tests are applied on the sets of data.  

The statistical difference between two states is evaluated. The Shapiro-
Wilk test (King & Mody, 2012) is performed in order to evaluate if the new 
obtained signals follow a normal distribution.  

The paired t test (King & Mody, 2012) is applied for those pairs of 
channels for which the normality conditions did meet in order to assess the 
statistical difference between left or right motor activity. The Wilconox signed-
tank test is computed (King & Mody, 2012) for channels that did not meet the 
normality condition. The confidence interval is 95%. 
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The approach is firstly tested using the PLV and then the PLI and 
WPLI. 

Two feature vectors were created in order to discriminate between left 
or right motor activity.  

For PLV, PLI and wPLI, the first feature vector is formed by the data 
from  the  pairs  of  channels which meet the conditions imposed by the paired 
t-test and the Wilcoxon signed-rank test. 

The second features is formed by the same data from the pairs of 
channels which fulfilled the conditions required by the statistical tests but the 
features for PLV, PLI and wPLI are combined.  

Discrimination between the left or the right motor activity is evaluated 
with five classifiers: linear discriminant analysis (LDA) (Lotte et al., 2007), 
quadratic discriminant analysis (QDA) (Hastie et al., 2009), Mahalanobis 
distance (MD) (Babiloni et al., 2001), k nearest neighbor (kNN) 
(Chaovalitwongse et al., 2007) and support vector machine (SVM) (Bennett & 
Campbel, 2000). A 10  10 fold cross validation estimated the classification rate 
for each subject. The results obtained in the frequency band 8,…,12 Hz are 
presented. We have also applied the methods for 12,…,30 Hz, but the 
classification rates are better for Mu rhythm.  
 

3. Results and Discussions 
 
 The pairs of electrodes selected for each subject for PLV, PLI and wPLI 
are listed in Table 1. For S7 the highest number of pairs was selected and for 
subject S3 the smallest number of pairs of electrodes.  
 

Subject PLV PLI wPLI 

S1 10 10 13 
S2 11 11 13 
S3 8 8 7 
S4 7 7 13 
S5 14 14 13 
S6 14 14 9 
S7 17 17 10 
S8 11 11 9 
S9 10 10 10 

 
Classification accuracy rates for PLV, PLI, wPLI using classifiers LDA, 

QDA and MD are displayed in Figs. 2,…,4, respectively. Subjects S1 and S7 

Table 1 
Number of Selected Pairs of Electrodes for PLV, PLI and wPLI 
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achieved maximum classification rates with MD classifier for PLV and PLI. For 
wPLI, the discrimination rates are smaller than those obtained with PLV and 
PLI.  The highest classification rates are obtained with MD classifier. 

 

 
Fig. 1 – The classification accuracy rates (%) obtained with LDA, 

QDA and MD for PLV. 
 

 

 

 

Fig. 2 – The classification accuracy rates (%) obtained with LDA, 
QDA and MD for PLI. 
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In Tables. 2,…,4 the classification accuracy rates (%) obtained with 

kNN (k=1:5) are presented for PLV, PLI and wPLI. The discriminations rates 
are above 94%. There are no major differences between neighbors. 

Subject k = 1 k = 2 k = 3 k = 4 k = 5 
S1 99.89 99.89 99.89 99.90 99.90 
S2 99.78 99.78 99.79 99.79 99.79 
S3 98.23 98.26 98.29 98.32 98.35 
S4 99.56 99.57 99.57 99.58 99.59 
S5 98.24 98.27 98.30 98.33 98.25 
S6 99.67 99.68 99.68 99.69 99.59 
S7 99.78 99.78 99.79 99.79 99.79 
S8 97.69 97.73 97.77 97.80 97.84 
S9 98.24 98.27 98.30 98.33 98.25 

 

Subject k = 1 k = 2 k = 3 k = 4 k = 5 
S1 99.89 99.89 99.89 99.90 99.90 
S2 99.56 99.57 99.57 99.58 99.59 
S3 98.57 98.59 98.62 98.64 98.66 
S4 99.56 99.57 99.57 99.58 99.59 
S5 98.68 98.70 98.72 98.74 98.77 
S6 99.34 99.35 99.36 99.37 99.38 
S7 99.67 99.68 99.68 99.69 99.69 
S8 97.03 97.08 97.13 97.18 97.22 
S9 99.23 99.13 98.93 98.85 98.66 

Fig. 3 – The classification accuracy rates (%) obtained with LDA, 
QDA and MD for wPLI. 

 
Table 2 

The Classification Rates (%) Obtained with kNN (k=1:5) for PLV 

Table 3 
 The Classification Rates (%) Obtained with kNN  (k=1:5) for PLI 
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Subject k = 1 k = 2 k = 3 k = 4 k = 5 
S1 98.46 98.48 98.30 98.12 97.94 
S2 97.47 97.40 97.34 97.28 97.22 
S3 97.68 97.61 97.44 97.38 97.12 
S4 96.68 96.74 96.80 96.86 96.91 
S5 98.13 98.16 98.19 98.22 98.15 
S6 98.46 98.48 98.40 98.33 98.15 
S7 96.26 96.32 96.38 96.44 96.50 
S8 98.46 98.48 98.51 98.54 98.56 
S9 94.49 94.48 94.47 94.46 94.34 

 
 The classification rates for PLV, PLI and WPLI using SVM classifier 
are shown in Fig. 5.  The discrimination rate for subjects S4 and S7 is 100% 
using the PLI and PLV methods.  
 In (Ince et al., 2007) a space time–frequency approach using six 
subjects (S1, S2, S5, S6, S7, S9) and the pair C3-C4 is investigated. For subject 
5 the classification rates are reported in the range 67.20%,…,76.40%. With 
PLV, PLI, wPLI, distinct features and combined features, the classification rates 
were in range 62.55%,…,100%. 
 

 

 
The research evaluated three phase synchronization based methods with 

three indexes: phase locking value, phase lag index and weighted phase lag 
index. The synchronization measures were applied on a dataset with nine well 
trained subjects.   

Table 4  
The Classification (%) Rates Obtained with kNN (k=1:5) for wPLI 

Fig. 5 – The classification accuracy rates (%) obtained with SVM 
for PLV, PLI and wPLI. 
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Subject LDA QDA MD 
KNN 

SVM k = 1 k = 2 k = 3 k = 4 k = 5 
S1 81.48 85.60 85.39 96.48 96.54 96.56 96.58 96.54 98.35 
S2 83.95 86.83 93.83 97.50 97.51 97.52 97.52 97.50 96.30 
S3 72.84 78.19 85.60 93.93 93.93 93.90 93.86 93.83 91.56 
S4 78.81 93.00 90.33 96.99 97.04 97.09 97.14 97.19 99.18 
S5 76.95 90.74 91.15 97.06 97.11 97.13 97.18 97.22 98.35 
S6 79.01 81.48 80.04 94.71 94.77 94.79 94.84 94.68 97.12 
S7 67.90 84.16 84.98 94.71 94.77 94.79 94.80 94.72 97.53 
S8 80.45 94.44 90.95 95.99 96.06 96.13 96.20 96.26 96.30 
S9 62.55 79.22 79.63 93.90 94.01 94.04 94.11 94.14 95.06 

 
Pair channels selection using statistical test was applied in order to 

extract only the important features contained in signals.   
Combining synchronization measures (PLV, PLI and wPLI) can lead to 

improved results compared to classifications using the synchronization 
measures separately. Subjects S5 and S8 obtained better discrimination rates for 
combined features of PLV, PLI and wPLI – Table 5. 

The smaller classification rates (range 61.11%,…,85.80%) are obtained 
using LDA classifier. LDA offers satisfactory results because the boundary 
between the classes is not linearly separable. 

QDA classifier provides better results than LDA. Comparing the results 
obtained with LDA, QDA and MD classifiers, the higher classification rates are 
obtained with MD one. Subjects S1 and S7 achieved maximum classification 
rates for PLI and PLV with MD classifier. kNN classifier (k = 1:5) provides 
classification rates in the range 94.34%,…,99.90% and between neighbors no 
major differences are identified. Using SVM classifier two subjects also 
obtained the maximum classification rate. 

Comparing these methods, no significant differences are distinguished 
between PLV and PLI. Although wPLI is a more complex method by 
introducing weighted normalized phase difference, the classification rates 
obtained are above 95% for SVM and 94% for kNN.  

 
4. Conclusions and Future Work 

 
Offline analysis based on synchronization measures are tested for a 

motor imagery paradigm.  
Algorithms are simple to implement, few EEG channels are used, the 

important information contained in selected pair of channels are taken into 
consideration for further processing and so the classification rates are improved. 

The classification rates obtained reveal that the proposed methods can 
detect changes that appear during mental tasks. Discrimination between right 

Table 5  
The Classification Accuracy Rates (%) Obtained with LDA, QDA, MD, KNN and SVM 

Using Combined Features of PLV, PLI and wPLI 
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hand motor imagery and left hand motor imagery can be made by means of 
phase synchronization.  

Further work implies developing an ensemble classifier (a combination 
of classification methods) for improving the classification rates. 
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SELECŢIA CANALELOR ÎN SINCRONIZAREA DE FAZĂ PENTRU O 
INTERFAŢĂ CREIER CALCULATOR 

 
(Rezumat) 

 
Se propune o metodă de analiză offline pentru extragerea şi clasificarea 

trăsăturilor conţinute de semnalelor electroencefalografice folosind indici ce 
caracterizeză sincronizarea de fază pentru o paradigmă creier calculator bazată pe ritmul 
Mu. Indicii utilizaţi care măsoară sincronizarea de fază dintre două semnale au fost: 
indicele de blocare al fazei (Phase Locking Value – PLV), indicele de decalaj al fazei 
(Phase Lag Index – PLI), indicele ponderat de decalaj al fazei (Weighted Phase Lag 
Index – WPLI). Teste statistice sunt aplicate pentru extragerea perechilor de canalele 
care conţin trăsături relevante pentru clasificare. Analiza discriminantă liniară, analiza 
discriminantă pătratică, clasificatorul bazat pe calculul distanţei Mahalanobis, 
clasificatorul “celor mai apropiaţi k vecini” clasificatorul vector suport au fost applicate 
pentru discriminarea sarcinilor motorii . Rezultatele obţinute după selecţia perechilor de 
canale sugerează faptul că indicii care măsoară sincronizarea de fază pot fi folosiţi ca 
metode online pentru paradigmele creier calculator. 


