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Abstract. This paper deals with the use of approximate, sample, wavelet 
entropies, as well as of all their possible combinations with the aim of describing 
the epileptic electroencephalographic (EEG) signal. In order to differentiate 
between seizure and non-seizure computed values of the entropies, a support 
vector machine classifier is used. The results obtained using the EEG signals 
from CHB MIT database from epileptic children prove that it is possible, for 
some of the entropies, to attain very good performance concerning the rate of 
classification, sensitivities and specificities comparable or better than those 
reported in literature. 

 

Key words: electroencephalography; approximate entropy; sample entropy; 
wavelet entropy; support vector machine. 

 
1. Introduction 

 
Epilepsy is a chronic neurological disorder, characterized by abnormal 

electrical discharges of the brain cells and it affects more than 50 million people 
worldwide. Nearly 80% of these people live in developing countries and 3/4 of 
them do not get the required treatment.  
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The diagnosis for epilepsy based on an electroencephalographic (EEG) 
examination is put when the person has more than two unprovoked seizures 
which can affect a part of the brain or all of it. Its symptoms vary from a 
disturbance of sensation such as taste, vision, feeling or hearing to loss of 
consciousness and incontrollable body movements. People experiencing these 
disorders have their lives considerably altered and can hardly find a working 
place. In some countries, people being ill with epilepsy also suffer from stigma. 
A way of detecting or predicting a seizure can diminish these problems and 
increase the quality of life (www.who.int).  

Since 1980, when Gotman proposed a wavelet based method for 
classification between ictal and non-ictal EEG data (Gotman, 1982), detecting 
seizures by analysing the EEG signal has been a subject of interest in the 
scientific world. In order to have an algorithm that can detect ictal events, two 
major components are needed: suitable features that are thought to differentiate 
between seizure and non-seizure signals and a classifier that can enhance the 
accuracy and the sensitivity of the process. 

For feature extraction there is a wide range of methods. Some of them 
use time-domain characteristics such as amplitude, duration, sharpness, 
skewness (Adjouadi et al., 2005), histograms (Runarsson & Sigurdsson, 2005), 
signal energy (Yoo et al., 2013) and discriminating statistics that include mean 
variance, zero crossing rate, entropy and autocorrelation with template signals 
(Dalton et al., 2012). Other methods include frequency-domain attributes like 
magnitude and phase of Fourier transform, phase-slope index (Rana et al., 
2012), frequency moment signatures (Khamis et al., 2013) and wavelet-based 
methods where the wavelet coefficients are used mainly in pre-processing 
(Panda et al., 2010; Liu et al., 2012; Zhou et al., 2013; Shoaib et al., 2014).  

More complex methods include the chaotic behavior of the EEG signal 
throughout Lyapunov exponent (Guler et al., 2005) and fractal dimension 
(Paramanathan et al., 2007), non-linear parameters such as second-order 
difference plot and phase space representation of intrinsic mode functions 
(Pachori et al., 2014; Sharma & Pachori, 2015).  

In the field of seizure detection, the research based on the entropies 
include phase entropy, approximate entropy, sample entropy (Acharya et al., 
2012), distribution entropy (Li et al., 2015), permutation entropy (Ferlazzo et 
al., 2014), Shanon entropy, Renyi entropy (Sharma et al., 2015), Fuzzy entropy 
(Abhinaya et al., 2016). 

This article presents a method of discriminating between seizure and 
non-seizure periods in the EEG signal using three types of entropies 
(approximate entropy, sampling entropy and wavelet entropy) and combinations 
of them. For asserting the usefulness of the feature extracting methods, a 
support vector machine (SVM) classifier is used. The results are reported using 
the classification rate, the sensitivity and the specificity of the classifier. The 
analysis is made on EEG data from ten paediatric subjects from the CHB-MIT 
scalp EEG database (https://www.physionet.org). 
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2. Theoretical Background 

 
In the information theory, the term of entropy stands for an intuitive 

characteristic of irregularity, complexity, disorder and unpredictability of a time 
series. The higher the entropy, the more complex and less predictable the 
system (Phung et al., 2014).  

The use of entropies in the analysis of EEG recordings of epilepsy 
patients started in the 21st century, once new formulations for entropies were 
developed. Some of those expressions were successfully used in detecting and 
predicting epileptic seizures (Alotaiby et al., 2014) and led to the conclusion 
that, during a seizure, the brain's electrical activity is more predictable than 
during its normal activity, conclusion pointed out by a significant drop of the 
value of entropy. Another conclusion was that the artefacts gave to the EEG 
ictal signal a behaviour of a non-ictal one (Fergus et al., 2015; Zaylaa et al., 
2015). 

The approximate entropy (ApEn) was developed through a series of 
formulas and statistic and it was proved useful in the classification of complex 
systems. It is a parameter that quantifies the regularity of a data sequence. 
Firstly used in analyzing cardiac variability and pulsatile release of endocrine 
hormones, the ApEn was used in the analysis of EEG data as well, where it was 
proved that its value significantly drops during ictal periods due to synchronic 
electrical discharges of a large group of neurons during the epileptic seizure 
(Srinivasan et al., 2007). 

ApEn is defined by the formula (1) and can detect changes in the 
episodic behavior by comparing the similarities of samples, using the length of 
the pattern, m, and the coefficient of similarity or the diameter of the phase 
space partition (grain), r (Acharya et al., 2015) 
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and Cm is the correlation sum of an m-dimensional pattern; N is the length of the 
signal; ))()(( jxixd   represents the maximum norm in a phase space of 
embedded vectors; θ is the Heaviside function. For more details, see reference 
(Hope & Rosipal, 2001). 
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The most suitable value for the parameters m is 2 and for r is 0.2 times 
the standard deviation of the EEG signal (Pincus, 1991; Zhang et al., 2014). 

The advantages of ApEn are: it can be computed for relatively short 
noisy data, it can differentiate between a large amount of systems such as 
periodical, chaotic and stochastic ones and it can provide a better classification 
rate compared to that obtained by using the Kolmogorov-Sinai entropy. ApEn 
also has its drawbacks and amongst them there are its dependence on the length 
of the data entry, so it is not suitable for long time series and it counts self-
matches so that its reproducibility is absent (Acharya et al., 2015).  

The sample entropy (SampEn) measures the regularity of a 
physiological system and it is defined by the formula  
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A represents the total number of forward matches of length (m+1) and B 

is the total number of template matches of length m. Parameters N, m and r are 
the same as defined for ApEn.  

The SampEn is independent from the input data length and it is also a 
measure of self-similarity of the pattern. If the value of SampEn is greater than 
another one's, by a certain length, m, and a certain similarity criterion, r, then it 
remains grater for any other values for m and r. SampEn is relatively 
reproducible and reduces the systematical error given by ApEn. A high value of 
SampEn means that the signal is unpredictable and a low value that the signal is 
predictable and that in the input data set there is a large amount of similarities 
(Richman & Moorman, 2000).  

SampEn has the advantages of being successfully used for very short 
noisy data series, for discriminating a large variety of systems and theoretically 
with good results in cases of random numbers as the self-matches are excluded. 
SampEn's drawback is that it doesn't give coherent results in case of scattered 
data (Acharya et al., 2015).   
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The wavelet entropy (WEn) is based on a form of wavelet transform 
that can be applied to non-stationary signals and it is defined by the formula (3) 
(Grossmann & Morlet, 1984).  
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where: pi is a probability distribution of a time series and i is the level of 
resolution. 

The WEn is a measure of the level of disorder associated with the multi-
resolution analysis of a signal and gives information about its dynamics (Rosso 
et al., 2001). This type of entropy can be used in identifying the main 
component of a signal and it can offer a good result in the case of mono-
frequency signals. WEn is, like any other entropies, a measure of order or 
disorder of a signal and, as an advantage, it can detect changes in a non-
stationary signal due to the localizing characteristics of the wavelet transform. 
Another advantage of WEn is the short computational time because this entropy 
doesn't depend on any parameter and it uses the fast wavelet transform in a 
multi-resolution framework, cutting out noises (Kumar et al., 2010; Acharya et 
al., 2015).  

 
3. Results 

 
The set of the used EEG data is the CHB-MIT scalp EEG database from 

PhysioNet (www.who.int). This database consists of 664 recordings from 22 
patients grouped in 23 cases (one case represents the same female patient after 
one year and a half away from the first recording), 129 files contain one or more 
seizures and 435 are seizure-free files. The records were collected at the 
Children's Hospital in Boston from paediatric patients with intractable seizures 
that were monitored after several days of withdrawal of anti-seizure medication 
in order to assess their candidacy for surgical intervention. Another case, case 
24 related to patient 23, was added to the database later on and it is not included 
in the information provided for the first 23 cases. 

The patients are 5 males aged between 3 and 22 years and 17 females 
aged between 1.5 and 19 years. The patients were continuously monitored, but 
due to the hardware limitations, there are gaps between consecutively-numbered 
record files during which the signals were not recorded and some recordings 
contain "dummy" signals interspersed among EEG ones in order to obtain an 
easy-to-read display format. With the aim of keeping the privacy of the subjects, 
all protected health information in the *.edf files were replaced by surrogate 
ones. This may be the reason why some cases lack recordings and it looks as if 
they are not continuously acquired. For example, this is the case of subject 
Chb20, who misses the following recordings: 9, 10, 18, 19, 20, 24, 32, 33, 35 to 
58 and 61 to 67. Either this is the explanation, or the number of records is 
irrelevant in the numbering of the files and, thus, they have been randomly 
chosen. 
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Another drawback consists in that some cases should contain longer 
data series, two or four hours long, but all the downloaded files do not exceed 
one hour of recorded EEG signals. So, where the seizure is annotated to appear 
after three hours or so, there is no way in finding it in one hour long file. The 
most relevant case for this matter is subject Chb06, in whose case the 
information file states that some recordings are four hour long and, when 
checking the *.edf files associated with each recording, it states that the file is 
one hour long and that is exactly how long the recording is. 

All signals were sampled at 256 Hz, with 16-bit resolution and most of 
them contain 23 EEG signals. There are some cases that contain 24 or 26 
signals because there are also electrocardiographic (ECG) signals.  

The EEG signals were recorded using the International 10-20 system of 
EEG electrode positions and nomenclature, but the arrangement of the extracted 
channels is sometimes changed, switched, doubled or inversed with no justified 
reasons. In the case of subject Chb12, for example, the montages of electrodes 
are changed several times with no explanation and without a stated piece of 
information about how it may or may not affect the recorded data. 

Due to such kind of doubts concerning some files from this database, 
only 10 patients were chosen for analysis; two male and 8 female, aged between 
2 and 14 years old. The subjects used in this study were: Chb12 as subject 1, 
Chb14 as subject 2, Chb16 as subject 3, Chb20 as subject 4, Chb24 as subject 5, 
Chb01 as subject 6, Chb02 as subject 7, Chb03 as subject 8, Chb05 as subject 9 
and Chb08 as subject 10. From these cases, a number of 42 seizure and 42 non-
seizure EEG signals were extracted. The seizure signals had the full length of 
the seizure as it was annotated in the patient information files and the non-
seizure signals were extracted from the middle of seizure-free files, having the 
same length as that of the previous seizure. Examples of a seizure EEG signal 
and a seizure-free one can be seen in Figs. 1 and 2 respectively. 
 

 
 

Fig. 1 − Seizure EEG signal on channel 22 of Subject 8. 
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Fig. 2 − Non-seizure EEG signal on channel 22 of Subject 8. 

 
 
In order to form the feature vector, for each of the 10 patients, there 

were considered, one by one, the three types of the mentioned entropies (ApEn, 
SampEn and WEn) and each of the possible combinations of them. There were 
computed both for EEG signals with seizure and for non-seizure free EEG 
signals, for all the channels. Then, the SVM classifier was applied. There were 
computed the classification rates, the sensitivities and the specificities for all the 
pointed out cases. 

In what it follows, the performances of the SVM classifier are 
illustrated in terms of classification rates, sensitivities and specificities. 

In Table 1, for all kind of proposed entropies, there are reported the 
numbers of channels on which there were obtained the specified classification 
rates. 

For Subject 1, Subject 3, Subject 4, Subject 5, Subject 8 and Subject 9 
there were channels where the classification rates were higher than 90%. The 
best results were obtained for Subject 1 and Subject 8.  

In Fig. 3 there are reported the classification rates for Subject 1. 
As we can see from Fig. 3, there are classification rates above 90% both 

for all types of individual entropies and for merged ApEn with SampEn. For 
SampEn there are 11 channels with 100% classification rates. 

The worst results were attained for Subject 6 and Subject 7 as there 
were few channels where the classification rates were higher than 60% (but 
fewer than 70%). In Fig. 4 there are represented the classification rates for 
Subject 6. 
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Table 1 

The Numbers of Channels on Which there Were Obtained  
the Specified Classification Rates 

Entropy Classification 
rate, (%) 

Subject 
1 2 3 4 5 6 7 8 9 10 

ApEn 

≥60 16 1 3 16 0 3 0 23 6 1 
≥70 16 1 3 16 0 0 0 21 6 1 
≥80 5 0 0 7 0 0 0 21 0 0 
≥90 5 0 0 7 0 0 0 3 0 0 

SampEn 

≥60 21 8 11 1 16 3 0 23 9 1 
≥70 21 8 11 1 16 0 0 17 9 1 
≥80 11 0 0 0 5 0 0 17 0 0 
≥90 11 0 0 0 5 0 0 3 0 0 

WEn 

≥60 19 6 17 5 15 2 0 23 18 7 
≥70 19 6 17 5 15 0 0 16 18 7 
≥80 3 0 5 0 10 0 0 16 1 0 
≥90 3 0 5 0 10 0 0 8 1 0 

ApEn+SampEn 

≥60 23 13 14 14 10 0 6 22 2 4 
≥70 21 4 8 5 3 0 0 20 0 0 
≥80 14 2 4 2 0 0 0 5 0 0 
≥90 5 0 1 0 0 0 0 1 0 0 

ApEn+WEn 

≥60 3 7 0 1 4 0 0 16 13 0 
≥70 0 2 0 0 1 0 0 9 2 0 
≥80 0 0 0 0 0 0 0 0 1 0 
≥90 0 0 0 0 0 0 0 0 0 0 

SampEn+WEn 

≥60 14 6 6 5 1 0 2 21 11 2 
≥70 4 1 1 2 0 0 0 17 2 0 
≥80 0 0 0 0 0 0 0 4 0 0 
≥90 0 0 0 0 0 0 0 0 0 0 

ApEn+SampEn+ 
+WEn 

≥60 9 3 6 0 1 1 3 22 3 0 
≥70 4 0 1 0 0 0 0 18 0 0 
≥80 0 0 0 0 0 0 0 7 0 0 
≥90 0 0 0 0 0 0 0 0 0 0 
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a 
 

 
b 

Fig. 3 – Classification rates for Subject 1, for all types and combination of entropies  
(a for channel 1 to 12 and b for channel 13 to 23) 

 

 
a 

 
b 

Fig. 4 − Classification rates for Subject 6, for all types and combination of entropies  
(a for channel 1 to 12 and b for channel 13 to 23). 
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It is obvious that for subject 6, classification rates between 60% and 
70% are achieved for ApEn, SampEn, WEn and for combination of all the three 
entropies, but only for three, two or one channels. 

In Table 2, for all kind of proposed entropies, there are reported the 
numbers of channels on which there were obtained the specified sensitivities. 

In Table 3, for all kind of proposed entropies, there are enclosed the 
numbers of channels on which there were attained the listed specificities. 

 
Table 2 

Numbers of Channels on Which there Were Obtained the Specified Sensitivities 

Entropy Sensitivitity  
(%) 

Subject 
1 2 3 4 5 6 7 8 9 10 

ApEn 
  

≥60 11 11 2 14 0 11 1 21 0 2 
≥70 11 11 2 14 0 1 1 7 0 2 
≥80 11 11 2 14 0 1 1 7 0 2 
≥90 11 11 2 14 0 1 1 7 0 2 

SampEn 
   
 

≥60 11 16 4 0 14 3 0 18 0 3 
≥70 11 16 4 0 14 0 0 5 0 3 
≥80 11 16 4 0 14 0 0 5 0 3 
≥90 11 16 4 0 14 0 0 5 0 3 

WEn 
  
 

≥60 7 22 15 1 20 8 4 22 19 3 
≥70 7 22 15 1 20 1 4 14 19 3 
≥80 7 22 15 1 20 1 4 14 19 3 
≥90 7 22 15 1 20 1 4 14 19 3 

ApEn+SampEn 
  
 

≥60 18 18 16 11 11 3 7 15 3 7 
≥70 9 15 10 9 3 3 0 15 0 1 
≥80 9 15 10 9 3 0 0 7 0 1 
≥90 5 10 1 1 1 0 0 2 0 0 

ApEn+WEn 
  
 

≥60 10 11 8 9 6 1 9 18 14 3 
≥70 3 3 0 1 2 1 2 18 8 0 
≥80 3 3 0 1 2 0 2 14 8 0 
≥90 0 1 0 0 0 0 2 5 2 0 

SampEn+WEn 
 
  

≥60 17 7 7 5 5 1 5 20 10 5 
≥70 12 4 2 1 0 1 0 20 8 0 
≥80 12 4 2 1 0 0 0 16 8 0 
≥90 0 0 2 0 0 0 0 4 0 0 

ApEn+SampEn+ 
+WEn 

  
  

≥60 5 7 2 1 3 5 3 23 10 0 
≥70 5 7 2 1 3 1 3 23 10 0 
≥80 1 2 1 0 1 0 0 16 4 0 
≥90 0 0 1 0 0 0 0 9 0 0 

 
The CHB-MIT database has been used in several studies, starting with 

Shoeb's work on epileptic seizure detection using machine learning application. 
Using this approach, 96% of seizures were detected, but the specificity depends 
on the patient (Shoeb, 2009). As it can be seen from Table 3, even very high 
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specificities (grater then 90%) are attained by all the subjects if the ApEn values 
represent the feature vector. Regarding specificities between 80% – 90% also 
the combination between ApEn and SampEn attests to be a good choice for all 
10 subjects. 

 
 

Table 3 
Numbers of Channels on Which there Were Obtained the Specified Specificities 

Entropy Specificity 
(%) 

Subject 
1 2 3 4 5 6 7 8 9 10 

ApEn 
  
 

≥60 14 2 3 11 4 10 16 23 9 3 
≥70 14 2 3 11 4 1 16 19 9 3 
≥80 14 2 3 11 4 1 16 19 9 3 
≥90 14 2 3 11 4 1 16 19 9 3 

SampEn 
  
   

≥60 23 1 10 1 10 15 19 22 14 3 
≥70 23 1 10 1 10 4 19 21 14 3 
≥80 23 1 10 1 10 4 19 21 14 3 
≥90 23 1 10 1 10 4 19 21 14 3 

WEn 
  
  

≥60 18 0 13 12 13 15 10 22 5 6 
≥70 18 0 13 12 13 5 10 12 5 6 
≥80 18 0 13 12 13 5 10 12 5 6 
≥90 18 0 13 12 13 5 10 12 5 6 

ApEn+SampEn 
  
  

≥60 21 9 15 16 14 7 14 19 10 10 
≥70 19 2 9 8 5 7 7 19 3 3 
≥80 19 2 9 8 5 3 7 16 3 3 
≥90 15 0 1 1 0 1 7 7 0 1 

ApEn+WEn 
  
  

≥60 4 13 7 5 11 1 8 4 9 6 
≥70 0 4 0 1 5 1 1 4 2 0 
≥80 0 4 0 1 5 0 1 0 2 0 
≥90 0 0 0 0 0 0 1 0 0 0 

SampEn+WEn 
  
 

≥60 7 14 10 12 8 4 11 12 14 6 
≥70 3 4 3 5 4 4 1 12 8 2 
≥80 3 4 3 5 4 0 1 8 8 2 
≥90 1 0 0 3 0 0 1 2 3 0 

 
ApEn+SampEn+ 

+WEn 
  

≥60 10 7 8 2 4 4 8 20 2 1 
≥70 10 7 8 2 4 1 8 13 2 1 
≥80 0 3 0 0 3 0 0 4 1 0 
≥90 0 1 0 0 0 0 0 0 0 0 

 
Chiang et al., using a seizure prediction method based on an online 

retraining method using filtering, wavelet coherence with complex Gaussian 
wavelet and linear SVM, got a 52.2% sensitivity. This outcome was obtained 
after post-processing, using 22 channels in case of patients 1, 6, and 8 (Chiang 
et al., 2011). For some of the subjects, in our proposed method, a much better 
sensitivity was attained. So, for Subject 1 and Subject 8 sensitivities better than 
90% are accomplished by means of ApEn, SampEn, WEn and of the 
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combination between ApEn and SampEn. Even for subject 6 who did not 
attained so good rates of classification, for ApEn and WEn sensitivities grater 
then 90% were obtained (but only for one channel). 

Chang et al. used continuous wavelet transform, filtering, coherence, 
SVM training and testing on data from six patients from the CHB-MIT 
database. As results, a successful rate of 60% was achieved for 5 patients with a 
22 channel model, a successful rate of 70% for a 3 channel model and, after 
using adaptive channel selection of three to six channels, a successful rate of 
85% for 5 patients was attained. Using a small number of channels decreased 
the computational rate, but it was not suitable for all patients (Chang et al., 
2012). From Table 1, it is very easy to conclude that for five subjects, for some 
entropies we accomplished successful rates better than 90%.  

Xiang et al. approached the problem with sample and Fuzzy entropy, 
features later classified with the Kolmogorov-Sinai test and SVM, respectively. 
The accuracy, specificity and sensitivity were: 97.16%, 97.34% and 97.01% 
respectively, in the case of sample entropy and 98.31%, 98.36% and 98.27% 
respectively in the case of Fuzzy entropy (Xiang et al., 2015). From Table 2, it 
is obviously that there were achieved better results in our study. So, for ten 
subjects, using WEn, sensitivities better than 90% were reached. For all the 
subjects, there are channels on which the sensitivity is 100%. 

 
3. Conclusions 

 
For all the subjects, specificities higher than 90% are achieved when 

using ApEn and SampEn of EEG signals and sensitivities higher than 90% 
when using the WEn. In the all the mentioned cases a SVM classifier was 
applied.  

The results using the epileptic children’ EEG signals from CHB MIT 
database prove that for some kind of entropies it is possible to attain very good 
performance of classification, especially concerning the sensitivity and 
specificity. There are comparable or better than those identified in other papers 
when the same database was handled.  
        
 

REFERENCES 
 

Abhinaya B., Charanya D., Thanaraj K. P., Feature Extraction and Selection of a 
Combination of Entropy Features for Real-time Epilepsy Detection, Internat. J. 
of Engng. a. Computer Sci., 5(04), 16073-16078 (2016). 

Acharya U. R., Fujita H., Sudarshan K. V., Bhat S., Koh E. W. .J., Application of 
Entropies for Automated Diagnosis of Epilepsy Using EEG Signals: A Review, 
Knowledge Based Systems, 88, 85-96 (2015). 

Acharya U.R., Molinari F., Sree S. ., Chattopadhyay S., Ng K. H., Suri J. S., Automated 
Diagnosis of Epileptic EEG Using Entropies, Biomedical Signal Processing 
and Control, 7(4), 401-408 (2012). 



Bul. Inst. Polit. Iaşi, Vol. 63 (67), Nr. 3, 2017                                        57                                         
 

Adjouadi M., Cabrerizo M., Ayala M., Sanchez D., Yaylali I., Jayakar P., Detection of 
Interictal Spikes and Artifactual Data Through Orthogonal Transformations. 
Journal of Clinical Neurophysiology, 22(1), 53-64 (2005). 

Ahammad N., Fathima T., Joseph P., Detection of Epileptic Seizure Event and Onset 
Using EEG, BioMed Research International, 2014, 1-7 (2014). 

Alotaiby T.N., Alshebeili S.A., Alshawi T., Ahmad I., Abd El-Samie F.E., EEG Seizure 
Detection and Prediction Algorithms: A Survey, EURASIP Journal on 
Advances in Signal Processing, a SpringerOpen Journal, 2014(183), 1-21 
(2014) 

Chang N.-F., Chen T.-C., Chiang C.-Y., Chen L.-G., Channel Selection for Epilepsy 
Seizure Prediction Method Based on Machine Learning, 34th Annual 
International Conference of the IEEE Engineering in Medicine and Biology 
Society (EMBS), 2012, San Diego, California USA, 5162-5165. 

Chiang C.-Y., Chang N.-F., Chen T.-C., Chen H.-H., Chen L.-G., Seizure Prediction 
Based on Classification of EEG Synchronization Patterns with On-line 
Retraining and Post-Processing Scheme, 33rd Annual Internat. Conf. of the 
IEEE in Medicine and Biology Society (EMBS), 2011, Boston, Massachusetts 
USA, 7564-7569. 

Dalton A., Patel S., Chowdhury A.R., Welsh M., Pang T., Schachter S., Olaighin G., 
Bonato P., Development of a Body Sensor Network to Detect Motor Patterns of 
Epileptic Seizures, IEEE Transactions on Biomedical Engineering, 59(11), 
3204-3211 (2012). 

Fergus P., Hignett D., Hussain A., Al-Jumeily D., Abdel-Aziz K., Automatic Epileptic 
Seizure Detection Using Scalp EEG and Advanced Artificial Intelligence 
Techniques, BioMed Research International, 1-17 (2015). 

Ferlazzo E., Mammone N., Cianci V., Gasparini S., Gambardella A., Labate A., Latella 
M.A. Sofia V., Elia M., Morabito F.C., Aguglia U., Permutation Entropy of 
Scalp EEG: A tool to Investigate Epilepsies: Suggestions From Absence 
Epilepsies, Clinical Neurophysiology, 125(1), 13-20 (2014). 

Goldberger A.L., Amaral L.A.N., Glass L., Hausdorff J.M., Ivanov P.Ch., Mark R.G., 
Mietus J.E., Moody G.B., Peng C-K., Stanley H.E., PhysioBank, 
PhysioToolkit, and PhysioNet: Components of a New Research Resource for 
Complex Physiologic Signals, Circulation, 101(23), Circulation Electronic 
Pages, 200-215 (2000); http://circ.ahajournals.org/cgi/content/full/101/23/e215 
accessed on May 2016. 

Gotman J., Automatic Recognition of Epileptic Seizures in the EEG, Electroencephalo-
graphy and Clinical Neurophysiology, 54(5), 530-540 (1982). 

Grossmann A., Morlet J., Decomposition of Hardy Functions into Square Integrable 
Wavelets of Constant Shape, SIAM Journal on Mathematical Analysis, 15(4), 
723-736 (1984). 

Guler I., Ubeyli E. D., Recurrent Neural Networks Employing Lyapunov Exponents in 
EEG Recordings, Expert Systems with Applications, 29(3), 506-514 (2005). 

Hope A. T., Rosipal R., Measuring Depth of Anesthesia using Electroencephalogram 
Entropy Rates, http://aiolos.um.savba.sk/~roman/Papers/wp01.pdf accessed on 
May 2016. 

Khamis H., Mohamed A., Simpson S., Frequency–moment Signatures: A Method for 
Automated Seizure Detection from Scalp EEG, Clinical Neurophysiology, 
124(12), 2317-2327 (2013). 



58                                    Laura-Ioana Grigoraş and Anca Mihaela Lazăr                                   
 
Kumar S.P., Sriraam N., Benakop P.G., Jinaga B.C., Entropies Based Detection of 

Epileptic Seizures with Artificial Neuralnetwork Classifiers, ExpertSystems 
with Applications, 37(4), 3284-3291 (2010).  

Li P., Yan C., Karmakar C., Liu C., Distribution Entropy Analysis of Epileptic EEG 
Signals, 37th Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society (EMBC), 2015, Milan, Italy, 4170-4173. 

Liu Y., Zhou W., Yuan Q., Chen S., Automatic Seizure Detection Using Wavelet 
Transform and SVM in Long-term Intracranial EEG, IEEE Transactions on  
Neural Systems and Rehabilitation Engineering, 20(6), 749–755 (2012). 

Pachori R.B., Patidar S., Epileptic Seizure Classification in EEG Signals Using Second-
Order Difference Plot  of Intrinsic Mode Functions, Computer Methods and 
Programs in Biomedicine, 113(2), 494-502 (2014). 

Panda R., Khobragade P.S., Jambhule P.D., Jengthe S.N., Pal P.R., Gandhi T.K., 
Classification of EEG Signal Using Wavelet Transform and Support Vector 
Machine for Epileptic Seizure Diction, Proceedings of International 
Conference on Systems in Medicine and Biology, 2010, Kharagpur, India, 405-
408.  

Paramanathan P., Uthayakumar R., Application of Fractal Theory in Analysis of Human 
Electroencephalographic Signals, Computers in Biology and Medicine, 38(3), 
372-378 (2008). 

Phung D., Tran D., Ma W., Nguyen P., Pham T., Using Shannon Entropy as EEG 
Signal Feature for Fast Person Identification, ESANN proceedings, European 
Symposium on Artificial Neural Networks, Computational Intelligence and 
Machine Learning,  2014, Bruges, Belgium, 413-418. 

Pincus S.M., Approximate Entropy as a Measure of System Complexity, Proc. National  
Academy of Sciences of the United States of America, Mathematics, 1991,  
USA, 88(6), 2297-2301. 

Rana P., Lipor J., Lee H., Drongelen W.V., Kohrman M.H., Veen B.V., Seizure 
Detection Using the Phase-slope Index and Multichannel ECoG, IEEE 
Transactions in Biomedical Engineering, 59(4), 1125-1134 (2012). 

Richman J.S., Moorman R.J., Physiological Time-series Analysis Using Approximate 
Entropy and Sample Entropy, American Journal of Physiology. Heart and 
Circulatory Physiology, 278(6), H2039-H2049 (2000). 

Rosso O.A., Blanco S., Yordanova J., Kolev V., Figliola A., Schürman M., Başar E., 
Wavelet Entropy: A New Tool for Analysis of Short Duration Brain Electrical 
Signals, Journal of Neuroscience Methods, 105(1), 65-75 (2001). 

Runarsson T.P., Sigurdsson S., On-line Detection of Patient Specific Neonatal Seizures 
Using Support Vector Machines and Half-wave Attribute Histograms, The 
Internat. Conf. on Computational Intelligence for Modelling, Control and 
Automation, and International Conf. on Intelligent Agents, Web Technologies 
and Internet Commerce (CIMCA-IAWTIC), 2005, Vienna, Austria, 673-677. 

Sharma R., Pachori R.B., Acharya U.R., Application of Entropy Measures on Intrinsic 
Mode Functions for the Automated Identification of Focal Electro-
encephalogram Signals, Entropy, 17(2), 669-691 (2015). 

Sharma R., Pachori R.B., Classification of Epileptic Seizures in EEG Signals Based on 
Phase Space Representation of Intrinsic Mode Functions, Expert Systems with 
Applications , 42(3), 1106-1117 (2015). 

Shoaib M., Lee K.H., Jha N.K., Verma N., A 0.6–107 μW Energy-scalable Processor 
for Directly Analyzing Compressively-sensed EEG, IEEE Transactions on 
Circuits and Systems I: Regular Papers, 61(4), 1105-1118 (2014). 



Bul. Inst. Polit. Iaşi, Vol. 63 (67), Nr. 3, 2017                                        59                                         
 

Shoeb A.H., Application of Machine Learning to Epileptic Seizure Onset Detection and 
Treatment, PhD Thesis, Massachusetts Institute of Technology, 2009, 
http://physionet.mit.edu/physiobank/database/chbmit/shoeb-icml-2010.pdf 
accessed on May 2015. 

Srinivasan V., Eswaran C., Sriraam N., Approximate Entropy-Based Epileptic EEG 
Detection Using Artificial Neural Networks, IEEE Transactions on Information 
Technology in Biomedicine, 11(3), 288-295 (2007). 

Xiang J., Li C., Li H., Cao R., Wang B., Han X., Chen J., The Detection of Epileptic 
Seizure Signals Based on Fuzzy Entropy, Journal of Neuroscience Methods, 
243, 18-25 (2015).  

Yoo J., Yan L., El-Damak D., Bin Altaf M.A., Shoeb A.H., Chandrakasan A.P., An 8 
Channel Scalable EEG Acquisition SoC with Patient-specific Seizure 
Classification and Recording Processor, IEEE Journal of Solid-State Circuits, 
48(1), 214-228 (2013). 

Zaylaa A.J., Harb A., Khatib F.I., Nahas Z., Karameh F.N., Entropy Complexity 
Analysis of Electroencephalographic Signals During Pre-Ictal, Seizure and 
Post-Ictal Brain Events, Internat. Conf. on Advances in Biomedical Engng. 
(ICABME) 2015, Beirut, Lebanon, 134-137. 

Zhang Z., Chen Z., Zhou Y., Du S., Zhang Y., Mei T., Tian X., Construction of Rules 
for Seizure Prediction Based on Approximate Entropy, Clinical 
Neurophysiology, 125(10), 1959-1966  (2014). 

Zhou W., Liu Y., Yuan Q., Li X., Epileptic Seizure Detection Using Lacunarity and 
Bayesian Linear Discriminant Analysis in Intracranial EEG, IEEE 
Transactions on Biomedical Engineering, 60(12), 3375-3381 (2013). 

* * *  World Health Organization, www.who.int, accessed on April 2017.  
* * *  The CHB MIT Scalp Database, https://www.physionet.org, accessed on April 2017. 
 

 
UTILIZAREA ENTROPIILOR ÎN EPILEPSIE 

Studiu pe bază de date cu semnale electroencefalografice 
 

(Rezumat) 
 

Pentru descrierea semnalului electroencefalografic din timpul crizelor unor 
pacienţi ce suferă de epilepsie, s-au folosit entropia aproximată, entropia eşantion şi cea 
de tip wavelet, precum şi combinaţii ale acestora. Pentru discriminarea entropiilor din 
timpul crizelor şi a celor din perioada fără criză s-a utilizat clasificatorul de tip SVM. 
Rezultatele obţinute atunci când a fost folosită o bază de dat ce conţine înregistrări de 
semnale EEG de la copii ce suferă de epilepsie pun în evidenţă faptul că, pentru unele 
tipuri de entropii, se obţin rate de clasificare, sezitivităţi şi specificităţi comparabile sau 
mai bune decât cele raportate în literatura de specialitate. 



 


