
BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI
Publicat de

Universitatea Tehnică „Gheorghe Asachi” din Iaşi
Volumul 63 (67), Numărul 3, 2017

Secţia
ELECTROTEHNICĂ. ENERGETICĂ. ELECTRONICĂ

DIGITAL NEURON ARCHITECTURE FOR MULTILAYER
NEURAL NETWORKS HARDWARE IMPLEMENTATION

BY

ŢIGĂERU LIVIU*

“Gheorghe Asachi” Technical University of Iaşi,
Faculty of Electronics, Telecommunications and Information Technology

Received: July 31, 2017
Accepted for publication: August 28, 2017

Abstract. During recent years, neural networks and deep learning had
drawn a grown interest from the side of the scientific community and industrial
environment, due to their promising potential in solving complex problems.
However, the implementation of neural networks for real time applications raises
a lot of challenges, caused by the computational burden. The present paper
introduces a mixed serial-parallel, scalable digital neuron architecture, suitable
for online learning multilayer neural networks implementation, able to be
configured as a sigmoid or as a hyperbolic tangent neuron, respectively. To test
its performance, the proposed neuron was implemented on a set of various FPGA
devices. The implementation results indicate it requires less than 1% from the
total quantity of the FPGA’s logical resources, while its working frequency can
be increased over 100 MHz.

Key words: neural networks; neuron model; machine learning; FPGA
design.

1. Introduction

Nowadays, machine learning is one of the hottest topics in the

information technology field, a broad range of machine learning applications

*Corresponding author: e-mail: ltigaeru@etti.tuiasi.ro

62 Ţigăeru Liviu

being reported in scientific journals and magazines. Also, the involvement of
the industrial environment in machine learning applications records a strong
growing, many important companies such as Google, Nvidia, IBM, Microsoft,
Facebook, Apple, etc. investing huge funds to develop their artificial
intelligence departments.

One of the most powerful information processing paradigm in machine
learning, inspired by the way the biological brain processes the information, is
artificial neural network and deep learning. Artificial neural networks use
interconnected processing elements, named artificial neurons, to learn patterns
from sets of examples, to solve different type of problems such as classification,
clusterization, predictive analysis, etc. There are a lot of solutions for artificial
neural networks implementation, based of software or hardware approaches.
Software solutions provide effective environments for analysing the tackled
problem, supplying a rich set of useful tools. However, due to the huge
computational requirements, such solutions could exhibit significant limitations
in complex, real time applications, such as deep learning neural networks for
example. To solve these challenges, scientific community along with important
chip companies strive to develop effective support to run these applications.
Thus, Nvidia (Nvidia Titan V) and ARM (MALI G72) provide powerful GPUs
(Graphical Processing Units) as a response to the needs of the artificial neural
networks. On the other hand, giants as Intel (Intel Nervana), Google (Tensor
Processing Unit), IBM (Hsu, 2016), Hewlett Packard Enterprise (Hemsoth,
2017), come with a hardware perspective, providing dedicated neural chips.

The present work focuses on the processing element of the neural
network – the artificial neuron. There are many hardware neuron models
reported in the scientific literature. Some of them follow the multilayer
perceptron model (Minsky et al., 1969), others the Hodgkin - Huxley neuron
(Hodgkin et al., 1952; Izhikevich, 2003), which exhibits a closer behaviour to
the biological counterpart. For each case, there are reported various hardware
solutions using analog (Binas et al., 2016; Indiveri et al., 2015; Neftci et al.,
2011; Rangan et al., 2010; Wijekoon et al., 2008; Indiveri, 2006;
Cauwenberghs, 1997), digital technologies (Jimenez-Fernandez et al., 2016;
Matsubara et al., 2013; Gompertz et al., 2011; Ţigăeru et al., 2011; Guangxing
et al., 2010; Ţigăeru, 2009; Ros et al., 2007; Schoenauer et al., 2002) and mixed
analog-digital technologies (Wijekoon et al., 2012; Schemmel et al., 2010;
Heittmann et al., 2002). Each approach has benefits and drawbacks, as structure
simplicity and power efficiency for the analogue ones, respectively robustness
and memory support for the digital solutions. In the present paper, it is proposed
a digital scalable serial-parallel architecture for an artificial neuron, suitable for
online learning multilayer neural networks implementations. The mathematical
model of the proposed neuron is discussed in section II, followed in section III
by a detailed description of its architecture. The section IV concerns the
functional verification and the implementation of the neuron. For this purpose, a
set of various FPGA devices were considered, to obtain an extended view about

Bul. Inst. Polit. Iaşi, Vol. 63 (67), Nr. 3, 2017 63

the implementation requirements and performance of the proposed neuron.
Final comments about the present work are presented in Section V.

2. The Mathematical Model of the Artificial Neuron

The model of the artificial neuron is depicted in Fig. 1. It follows the

perceptron model that simulates the basic behaviour of the biological neuron in
a simplified manner.

Fig. 1 – The model of the artificial neuron.

According to this, the artificial neuron gathers to its inputs the neural

activity produced by the surrounding neurons and computes a net input denoted
as z, as a weighted sum of its inputs,

1

1

1
N

i i
i

z b w x




   , (1)

where: b is the neuron’s bias and gives a measure of how easy a neuron fires its
neural response and wi – the weight of each neural activity xi, fired by the N – 1
neurons to which it is connected.

Subsequently, the net input z is supplied to an activation function f(),
which is used to compute the response of the artificial neuron,

 zfy  . (2)

The activation function models the firing rate of the electrical impulses
generated by the biological neuron, which increases proportionally to its net
input. There are many activation functions for the artificial neurons, but the
most common ones, used especially in classification applications, are the
sigmoid function (3) and the hyperbolic tangent function (4), respectively:

   z
zf




exp1
1 , (3)

64 Ţigăeru Liviu

   
 

1 exp 2
1 exp 2

z
f z

z
  


  

. (4)

3. The Architecture of the Artificial Neuron

The proposed architecture of the artificial neuron is tailored to be used

with the back-propagation error learning algorithm (Rumelhart et al., 1986).
The architecture is presented in Fig. 2, where it is considered the case of a
neuron with 16 inputs x0…x15, which could cover a large number of
applications. The proposed architecture is scalable, neurons with a larger
number of inputs being able to be implemented by expanding the selection
block selBlock.

Fig. 2 – The architecture of the artificial neuron

The neuron’s inputs takes the neural information x0…x15 from the

connected neurons, weight them with the individual weights w0…w15 and fires
the response y according to the equation:

15

0 0
0

, where ; 1,i i
i

y f w x x b w


 
      

 
 (5)

where the activation function f() can be selected between sigmoid function and
hyperbolic tangent function, depending on the neuronType input state.

Bul. Inst. Polit. Iaşi, Vol. 63 (67), Nr. 3, 2017 65

Besides the neuron’s output y, used in the forward phase of the learning
algorithm, the architecture also provides its derivative, denoted yD, used in the
backward phase of the learning algorithm.

All numerical values wherewith the artificial neuron operates use a
signed 3.12, fixed point S_III.FFFFFFFFFFFF format, where S stands for the
sign bit, III field represents the integer part, and FFFFFFFFFFFF field
represents the fractional part of the value, respectively. The adopted format
confines the numerical values of each neuron’s variable (x, w, z, y) to the [–8.0 ÷
÷ +7.999755859375] range, with a precision that ensures the convergence of the
back-propagation error learning algorithm (Holt et al., 1993).

The proposed architecture consists of three distinct blocks, which
implement distinct phases in the computational chain of the neuron’s output.
The first block, called selBlock selects the inputs xi and theirs corresponding
weights wi in sequentially groups of 4 input-weight pairs, controlled by the sel
input value. Each selected group of pairs is then supplied in parallel to
the netInputBlock, which accumulates their sum xiwi + xi+1wi+1 + xi+2wi+2 +
+ xi+3wi+3 and finally updates the net input z value. In the end, the net input z is
taken by the activationBlock which computes the outputs y and yD, according to
the selected activation function.

Subsequently, a detailed description of the main blocks of the neuron
architecture is given.

3.1. The Selection Block

The structure of the selection block is based on 4 data inputs
multiplexers mux4 and is depicted in Fig. 3 a. If the application requires a larger
number of the neuron’s inputs, this block can be augmented with another layer
of 4 data inputs multiplexers, placed in a tree configuration, keeping the number
of selection block’s outputs equal to the number of net input block’s inputs.

3.2. The Net Input Block

Its inputs number is equal to the number of input-weight pairs, selected
by the selection block, which is limited to 4 to accelerate the computation time
of z. However, for neurons with a large number of inputs, an increase of the
inputs number of the net input block has to be taken into a consideration, to
balance the propagation times between this and the selection block.

The net input block uses a set of arithmetic circuits which perform
signed fixed point multiplications (multiplier) and additions (adder)
respectively, which are placed in a tree structure, as is presented in Fig. 3 b.
Each multiplier truncates the multiplication result to 16 bits, preserving from
the 32 bits of the multiplication result the sign bit (the MSB bit), [26:24] field of
bits for the integer part and [23:12] field of bits for the fractional part,
respectively. Also, to avoid the overflow errors occurring during the
computation, each adder includes a saturation circuit that bounds its output
value to [–8.0 ÷ +7.999755859375].

66 Ţigăeru Liviu

In the output side, netInputBlock has an accumulator structure
consisting in adder – rpp (where rpp is a parallel data register), to accumulate
the partial sums xiwi + xi+1wi+1 + xi+2wi+2 + xi+3wi+3, and after that, when all
groups of input – weight pairs were delivered, to update the z value according to
the below equation:

4 33

0 4

where
j

j j i i
j i j

z s s w x


  

   . (6)

Fig. 3 – a – The selBlock structure; b – the netInputBlock structure (for the sake of

simplicity, the clock and reset inputs of the register are omitted).

Bul. Inst. Polit. Iaşi, Vol. 63 (67), Nr. 3, 2017 67

3.3. The Activation Block

The activation block is presented in Figure 4. It consists of 3 main
circuits, namely sigmaCircuit, which computes the sigmoid function,
sigmaDCircuit, which computes its derivative and tanhCircuit, which computes
the hyperboidal tangent function. Besides, activationBlock uses a 16 bits adder
to compute the derivative of the hyperbolic tangent and two selection circuits, to
deliver at its outputs the activation function and its derivative values,
respectively, depending on the neuronType signal value. Thus, if neuronType =
0, then y = sigma(z) and yD = sigmaD(z) and if neuronType = 1, then y = tanh(z)
and yD = tanhD(z), where the suffix denoted by D suggests the derivative value.

Fig. 4 – The activationBlock structure.

There are many approximation methods used to implement the sigmoid

function (Tommiska, 2003), of which the one adopted in this paper is that based
on PLAN approximation Eq. (7a) (Amin et al., 1997). This method gives a good
compromise between the consumed resources and precision (Vassiliadis et al.,
2000), according to that, the average error and maximum error, using PLAN
method to approximate sigmoid function is 0.59% and 1.89% of the [–8,8] input
range, respectively.

The structure of the sigmaCircuit is presented in Fig. 5. The two terms
added in each PLAN equation are provided by shifter circuit and mux4
multiplexer, respectively, based on the condition signal, which is generated by
the conditionDetector circuit. This circuit is used to identify the range where the
absolute value of z belongs. The shifter circuit uses the equivalence between the
division with power of two and the left shifting operations, to implement the
multiplication operation, between |z| and the corresponding PLAN coefficients,
which are nothing else but the unit value divided by various powers of two
(0.25 = 2–2, 0.125 = 2–3, 0.03125 = 2–5). As an exception, if the condition |z| > 5
is detected, the shifter outputs a null value.

68 Ţigăeru Liviu

One comment has to be done about the representation of the unity value
in the proposed architecture. Because it was adopted a 3.12 fixed point format
to represent all numerical values, some limitations are introduced in
representation of the numerical values. This affects the unity value
representation, where the closest value to it is 0.999755859375.

Fig. 5 – The sigmaCircuit structure.

Because the PLAN equations provided in Eq. (7a) are valid only for

positive values of z, a 16 bits subtractor is involved on the output side of
sigmaCircuit, to implement sigma function for negative values of z. In this case,
the sigmoid function has to be computed according to the Eq. (7b). The mux2
multiplexer decides the output value of the sigmoid function, depending on the
sign bit of z Eq. (7c).

1 if 5

0.03125 0.84375 if 2.375 5
0.125 0.625 if 1 2.375

0.25 0.5 if 0 1

z
z z

sigma
z z
z z



 
         
    

 (7a)

  sigmasigma 1 (7b)

i f 0
if 0

sigma z
sigma

sigma z





 
 


 (7c)

The sigmoid function has some nice mathematical properties, which are

exploited in this paper, to build sigmaDCircuit and tanhCircuit, respectively.

Bul. Inst. Polit. Iaşi, Vol. 63 (67), Nr. 3, 2017 69

First property gives the derivative of the sigmoid function, which can be
computed directly from sigmoid function, according to:

 sigmasigmasigmaD  1 (8)

Second property allows the hyperbolic tangent function to be expressed on the
base of sigmoid function:

12tanh  sigma (9)

And finally, the derivative of the hyperbolic tangent function can be expressed
using the derivative of the sigmoid function as (10):

sigmaDD  2tanh (10)

Fig. 6 – a – The sigmaDCircuit structure; b – the tanhCircuit structure.

These properties stand as foundation to build the sigmaDCircuit presented in
Fig. 6 a, where mutliplier has the same characteristics as the ones previously
presented and tanhCircuit presented in Fig. 6 b, respectively and also explain
the presence of the adder circuit denoted by add, in the structure of
activationBlock, depicted in Fig. 4.

4. Results

To validate the functionality of the artificial neuron, a set of

verifications of the proposed architecture were performed. For this purpose, the

70 Ţigăeru Liviu

proposed neuron was modeled in Verilog and implemented on XC7A100T-
3CGS324C - Artix 7 Xilinx FPGA device, using Vivado Design Suite software
design environment, produced by Xilinx.

The first checks were targeted on the functionality of the activation
block, which uses an approximation method to compute the sigmoid and
hyperbolic tangent activation functions, and their derivatives, respectively. To
this end, the post-synthesis simulation results, generated at the outputs of the
activation block, were saved in a text file to be compared with similar results
generated by Matlab models of these function, which were considered as ideal
ones.

The obtained results are plotted in Fig. 7, for sigmoid function and
Fig. 8, for hyperbolic tangent function, respectively. As can be seen, there are
small differences between the ideal functions and the ones which are generated
by the activation block, which lead to absolute errors a little smaller than 0.02,
enough to not undermine the functionality of the proposed neuron.

Fig. 7 – The comparison between the ideal and the hardware generated sigmoid

functions: a – The ideal sigmoid function and its derivative; b – the sigmoid function
and its derivative generated by the proposed neuron.

Bul. Inst. Polit. Iaşi, Vol. 63 (67), Nr. 3, 2017 71

Fig. 8 – The comparison between the ideal and the hardware generated hyperbolic

tangent functions: a – the ideal hyperbolic tangent function and its derivative; b – the
hyperbolic tangent function and its derivative generated by the proposed neuron.

The last comment is proved by the next set of investigations, which

compare the behaviour of the proposed neuron against an ideal Matlab based
neuron model, in two testing scenarios, namely the sigmoid neuron and the
hyperbolic tangent neuron, respectively. In this stage of the verification
procedure, it were considered a 16 inputs neuron model and 50 sets of random
generated inputs-weights (x, w) pairs, where x = (x0, x1, …, x15), and w = (w0,
w1, …, w15). Each inputs-weights pair was successively delivered to the inputs
of both neuron’s models, after that their outputs were monitored. The obtained
errors’ graphs, computed as the absolute difference between the hardware
neuron’s outputs and the Matlab neuron’s outputs, are plotted in the Fig. 9, for

72 Ţigăeru Liviu

the sigmoid activation function, and in the Fig. 10, for the hyperbolic tangent
function. The maximum values of these errors are summarized in Table 1,
where y is the error recorded at the y output, and yD is the error recorded at
the yD output. It can be seen that the errors for the hyperbolic tangent are larger
than the ones generated for the sigmoid function, due to the hyperbolic tangent
function is generated using as support the sigmoid function, which leads to an
error accumulation process.

Fig. 9 – The errors of the neuron with sigmoid activation function: a – the graph of the

error recorded at y output; b – the graph of the error recorded at yD output.

Bul. Inst. Polit. Iaşi, Vol. 63 (67), Nr. 3, 2017 73

Fig. 10 – The errors of the neuron with hyperbolic tangent activation function: a – the

graph of the error recorded at y output; b – the graph of the error recorded at yD output.

Table 1
The errors of the proposed neuron

Case y yD
Sigmoid function 0.01491 0.01768
Hyperbolic tangent function 0.03227 0.03621

Finally, the functionality of the proposed neuron was verified into an

application where a multilayer neural network is used to solve a classical xor
problem. In the considered test, each neuron use only 3 of 16 inputs (one for
bias, two to receive neural information) and the structure of the neural network
consists of two neurons on the input layer, 2 neurons on the hidden layer and
one neuron on the output layer. Besides the investigated neurons, the
architecture of the neural network contains another computational blocks, to

74 Ţigăeru Liviu

support online back-propagation learning algorithm, but the description of these
is beyond the goal of the present paper, being a topic for a future one.

The neural network was trained, and then validated, in two distinct
scenarios. For the first one, it was considered neurons with sigmoid activation
function. In the second one, it was considered neurons with hyperboidal tangent
activation function. The neural network was implemented in the same FPGA
device as the one previously used and the results were saved and plotted in
Fig. 11. As can be seen, the results confirm the expected behaviour of the neural
network, which is able to learn and solve the xor problem after a number of
training epochs. For the considered problem, the hyperboidal tangent activation
function seems to offer a better solution than the sigmoid alternative, leading to
a faster learning process.

Consequently, all these results validate the functionality of the proposed
artificial neuron.

Fig. 11 – The results recorded by the neural network for solving xor

problem (350 epochs).

Another concern of the present work was the implementation
performances of the proposed neuron on various FPGA devices, including
MPSoC FPGA type. For this purpose, it was considered a 16 inputs neuron,
implemented on a set of Xilinx FPGA devices, on which only the ones that gave
the most representative results are enumerated in Table 2, which summarize the
consumed logical resources for neuron’s implementation and the maximum
working frequency, respectively.

In each considered case, the implementation settings were kept to the
default values of Vivado Design Suite design environment. Consequently, the

Bul. Inst. Polit. Iaşi, Vol. 63 (67), Nr. 3, 2017 75

reported results are not the most optimistic ones, further improvements could
being achieved by using another implementation settings and introducing timing
constraints for critical paths.

Table 2

Implementation Results

FPGA Device

Consumed Resources

fMAX
[MHz]

fMAX
pipeline
[MHz]

Kintex UltraScale +
xcku5p – ffvb676 – 3

16nm*

LUTs: 184/216960 (< 1%)
DSP Blocks: 5/1824 (< 1%)

FF registers: 16/433920 (< 1%)

105.9

128.33

Zynq UltraScale +
xczu2cg – sfva625 – 3

16nm

LUTs: 184/47232 (< 1%)
DSP Blocks: 5/240 (< 2%)

FF registers: 16/94464 (< 1%)

98.2 108.43

Kintex UltraScale
xcku035 – fbva676 -3

20nm

LUTs: 184/203128 (< 1%)
DSP Blocks: 5/1700 (< 1%)

FF registers: 16/406256 (< 1%)

62.73 91.82

Zynq-7000
xc7z020- 3

28nm

LUTs: 230/53200 (<1%)
DSP Blocks: 5/220 (< 2%)

FF registers: 16/106400 (< 1%)

39.66 54.3

Artix 7
xc7a100T-cgs324-3

 28nm

LUTs: 230/63400 (< 1%)
DSP blocks: 5/240 (< 2%)

FF registers: 1 /126800 (< 1%)

36.77

52.79

Spartan 7
xc7s50 – cgs324 – 3

28nm

LUTs : 230/32600 (< 1%)
DSP blocks: 5/120 (< 4%)

FF registers: 16/65200 (< 1%)

32.41 46.26

* technology

Regarding the consumed FPGA’s resources, UltraScale family FPGA

devices provide better implementation solutions. However, irrespective of the
adopted FPGA device, the reported results show that less than 1% of the total
logical resources of any considered FPGA devices are consumed to implement
the proposed neuron. This suggests there remains enough room to implement
medium size neural networks on a single FPGA device, using the proposed
neuron. On the other hand, if a large number of neurons is required by the
application, a network of multiple interconnected FPGA devices can be
considered as an implementation option.

To investigate the maximum working frequency, a neural network with
two neurons on the input layer and one neuron on the output layer was
implemented on the considered FPGA devices. The maximum clock frequency,
to which the considered neural network can operate reliably, is reported on the
third column of the Table 2. Once again UltraScale family FPGA devices offer
the highest performance, which is close to 100MHz working frequency, while
for the other FPGA devices, the performance is about half below. This gap is
explained by innovations specific to UltraScale+/UltraScale 16 nm/20 nm

76 Ţigăeru Liviu

families, which claim to lead to 2÷5X greater system-level performance over
other 28 nm FPGA devices.

Additional improvements can be obtained by enforcing timing
constrains on critical paths, or by using high end FPGA devices, as Virtex
UltraScale+.

A global improvement of the timing performance could be achieved by
inserting layers of pipeline registers at the outputs of the selection block and
activation block, respectively. This technique was explored on the proposed
neuron and the results are reported in the last column of Table 2. Once again,
timing constrains on critical paths could bring additional performance
improvements.

Although the pipeline technique is beneficial regarding the performance
of the proposed neuron, the decision of using it has to be correlated with the
solution used in neural work to implement the learning algorithm. Without this
concern, the overall performance of the implemented neural network can be
deteriorated.

5. Conclusion

The present paper introduces a digital neuron scalable architecture,

suitable for online learning multi-layer neural networks implementation.
Depending on a configuration signal, the neuron model can use one of two
types of activation functions, namely sigmoid and hyperbolic tangent
respectively, which are implemented based on PLAN approximation method.

The functionality of the neuron model has been extensively verified in
various testing scenarios compared with ideal models and the errors were
monitored. Their small values confirm the feasibility of the proposed neuron
which is proved in a multilayer neural network used to solve an xor problem.

Finally, an analysis of the performance of the proposed neuron model
implemented on various Xilinx FPGA devices was performed. The obtained
results indicate the working frequency can be raised above 100 MHz, without
use of timing constraints. Regarding the implementation resources, the proposed
neuron requires less than 1% from the total quantity of the FPGA’s logical
resources, which allows medium size neural networks to be implemented on a
single FPGA device.

REFERENCES

Amin H., Curtis K.M., Hayes–Gill B.R., Piecewise Linear Approximation Applied to
Nonlinear Function of a Neural Network, IEEE Proc. Circ., Devices Syst., 144,
6, 313-317 (1997).

Binas J., Indiveri G. Pfeiffer M., Spiking Analog VLSI Neuron Assemblies as Constraint
Satisfaction Problem Solvers, Internat. Symp. on Circ. a. Syst. (ISCAS),
pp. 2094-2097, 2016

Cauwenberghs G., Analog VLSI Stochastic Perturbative Learning Architectures,
Analog Integrated Circuits and Signal Processing, 13, 1-2, 195-209 (1997).

Bul. Inst. Polit. Iaşi, Vol. 63 (67), Nr. 3, 2017 77

Gomperts A., Ukil A., Zurfluh F., Development and Implementation of Parameterized
FPGA-Based General Purpose Neural Networks for Online Applications, IEEE
Trans. on Industrial Informatics, 7, 1, 78-89 (2011).

Guangxing L., Vargha T., Ahmad Y., Curtis L. B. Jr., A FPGA Real-Time Model of
Single and Multiple Visual Cortex Neurons, J. of Neuroscience Methods, 193,
62-66 (2010).

Heittmann A., Ruckert U., Mixed Mode VLSI Implementation of a Neural Associative
Memory, Analog Integrated Circ. and Signal Proc., 30, 2, 159-172 (2002).

Hemsoth N., HPE Developing its own Low Power Neural Network Chips,
https://www.nextplatform.com, 2017.

Hodgkin A.L., Huxley F., A Quantitative Description of Membrane Current and its
Application to Conduction and Excitation in Nerve, J. Physiol., 116, 507-544
(1952).

Hodgkin A.L., Huxley F., Currents Carried by Sodium and Potassium Ions Through the
Membrane of the Giant Axon of Loligo, J. Physiol., 116, 449-472 (1952).

Hodgkin A.L., Huxley F., Katz B., Measurements of Current–Voltage Relations in the
Membrane of the Giant Axon of Loligo, J. Physiol., 116, 424-448 (1952).

Hodgkin A.L., Huxley F., The Components of Membrane Conductance in the Giant
Axon of Loligo, J. Physiol., 116, 473-496 (1952).

Hodgkin A.L., Huxley F., The Dual Effect of Membrane Potential on Sodium
Conductance in the Giant Axon of Loligo, J. Physiol., 116, 497-506 (1952).

Holt J.L., Hwang J-N., Finite Precision Error Analysis of Neural Network Hardware
Implementations, IEEE Trans. on Comp., 42, 3, 281-290 (1993).

Hsu J., IBM's Brain-Inspired Chip Tested for Deep Learning, IEEE Sprectrum, 2016.
Indiveri G., Chicca E., Douglas R., A VLSI Array of Low-Power Spiking Neurons and

Bistable Synapses with Spike–Timing Dependent Plasticity, IEEE Trans. on
Neural Networks, 17, 1, 211-221 (2006).

Indiveri G., Corradi F., Qiao N., Neuromorphic Architectures for Spiking Deep Neural
Networks, IEEE Internat.l Electron Devices Meeting (IEDM), 2015.

Izhikevich E. M., Simple Model of Spiking Neurons, IEEE Trans. on Neural Networks,
14, 6, 1569-1572 (2003).

Jimenez-Fernandez A., Cerezuela-Escudero E., Miro-Amarante L., Domınguez-Morales
M. J., de Asıs Gomez-Rodıguez F., Linares Barranco A., Jimenez-Moreno G.,
A Binaural Neuromorphic Aditory Sensor for FPGA: a Spike Signal
Processing Approach, IEEE Trans. on Neural Networks and Learning Systems,
2016.

Matsubara T., Torikai H., Asynchronous Cellular Automaton-Based Neuron:
Theoretical Analysis and on-FPGA Learning, IEEE Trans. on Neural Networks
and Learning Syst., 24, 5, 736-748 (2013).

Minsky M., Papert S., Perceptrons: an Introduction to Computational Geometry, MIT
Press, 1969.

Neftci E., Chicca E., Indiveri, G., Douglas R., A Systematic Method for Configuring
VLSI Networks of Spiking Neurons, Neural Computation, 23, 10, 2457-2497
(2011).

Rangan V., Ghosh A., Aparin V., Cauwenberghs G, A Subthreshold A VLSI
Implementation Of The Izhikevich Simple Neuron Model, Ann. Internat. IEEE
Conf. on Engng. in Medicine and Biology Society (EMBC), 4164-4167, 2010.

Ros E., Ortigosa E.M., Agis R., Carrillo R., Arnold M., Real-Time Computing Platform
for Spiking Neurons (RT-Spike), IEEE Trans. on Neural Networks, 17, 4, 1050-
1063 (2007).

78 Ţigăeru Liviu

Rumelhart D.E., Hinton G.E., Williams R.J., Learning Representations By Back-
Propagating Errors, Nature., 323, 533-536 (1986).

Schemmel J., Bruderle D., Grubl A., Hock M., Meier K., Millner S., A Wafer-Scale
Neuromorphic Hardware System for Largescale Neural Modeling, Internat.
Symp. on Circ. a. Syst. (ISCAS, 2010), pp. 1947-1950

Schoenauer T., Atasoy S, Mehrtash N., Klar H., NeuroPipe-Chip: A Digital Neuro-
Processor for Spiking Neural Networks, IEEE Trans, on Neural Networks,
13, 1, 205-213 (2002).

Tommiska M.T., Efficient Digital Implementation of the Sigmoid Function for
Reprogrammable Logic, IEE Proceedings – Computers and Digital
Techniques, 150, 6, 403-411 (2003).

Vassiliadis S., Zhang M., Delgado-Frias J.G., Elementary Function Generators for
Neural-Network Emulators, IEEE Trans. on Neural Networks, 11, 6, 1438-
1449 (2000).

Wijekoon J.H.B., Dudek P., Compact Silicon Neuron with Spiking and Bursting
Behaviour, Neural Networks, 21, 524-534 (2008).

Wijekoon J.H.B., Dudek P., VLSI Circuits Implementing Computational Models of
Neocortical Circuits, J. of Neuroscience Methods, 210, 1, 93-109 (2012).

ARHITECTURA DIGITALĂ PENTRU NEURON DEDICAT IMPLEMENTĂRII
HARDWARE A REŢELELOR NEURONALE MULTISTRAT

(Rezumat)

În ultimii ani, reţelele neuronale şi de tip deep learning au atras un interes

crescut din partea comunităţii ştiinţifice şi a mediului industrial, datorită potenţialului
lor promiţător în rezolvarea problemelor complexe. Totuşi, implementarea acestora
pentru aplicaţii în timp real ridică multe probleme, determinate de către cerinţele de
calcul. Articolul prezent introduce o arhitectură mixtă, de tip serie-paralel, scalabilă,
pentru neuron adaptat implementării reţelelor neuronale mutistrat, cu învăţare online,
care poate fi configurat să lucreze cu funcţii de activare de tip sigmoidal, respectiv
tangentă hiperbolică. Pentru testarea performanţelor sale, neuronul propus a fost
implementat pe un set de dispozitive FPGA. Rezultatele obţinute după implementare
indică faptul că acesta necesită mai puţin de 1% din cantitatea totală de resurse logice
ale dispozitivului FPGA, în timp ce frecvenţa maximă de lucru a acestuia poate fi
crescută la valori mai mari decât 100 MHz.

