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Abstract. During recent years, neural networks and deep learning had 
drawn a grown interest from the side of the scientific community and industrial 
environment, due to their promising potential in solving complex problems. 
However, the implementation of neural networks for real time applications raises 
a lot of challenges, caused by the computational burden. The present paper 
introduces a mixed serial-parallel, scalable digital neuron architecture, suitable 
for online learning multilayer neural networks implementation, able to be 
configured as a sigmoid or as a hyperbolic tangent neuron, respectively. To test 
its performance, the proposed neuron was implemented on a set of various FPGA 
devices. The implementation results indicate it requires less than 1% from the 
total quantity of the FPGA’s logical resources, while its working frequency can 
be increased over 100 MHz. 

 

Key words: neural networks; neuron model; machine learning; FPGA 
design. 

 
1. Introduction 

 
Nowadays, machine learning is one of the hottest topics in the 

information technology field, a broad range of machine learning applications 
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being reported in scientific journals and magazines. Also, the involvement of 
the industrial environment in machine learning applications records a strong 
growing, many important companies such as Google, Nvidia, IBM, Microsoft, 
Facebook, Apple, etc. investing huge funds to develop their artificial 
intelligence departments. 

One of the most powerful information processing paradigm in machine 
learning, inspired by the way the biological brain processes the information, is 
artificial neural network and deep learning. Artificial neural networks use 
interconnected processing elements, named artificial neurons, to learn patterns 
from sets of examples, to solve different type of problems such as classification, 
clusterization, predictive analysis, etc. There are a lot of solutions for artificial 
neural networks implementation, based of software or hardware approaches. 
Software solutions provide effective environments for analysing the tackled 
problem, supplying a rich set of useful tools. However, due to the huge 
computational requirements, such solutions could exhibit significant limitations 
in complex, real time applications, such as deep learning neural networks for 
example. To solve these challenges, scientific community along with important 
chip companies strive to develop effective support to run these applications. 
Thus, Nvidia (Nvidia Titan V) and ARM (MALI G72) provide powerful GPUs 
(Graphical Processing Units) as a response to the needs of the artificial neural 
networks. On the other hand, giants as Intel (Intel Nervana), Google (Tensor 
Processing Unit), IBM (Hsu, 2016), Hewlett Packard Enterprise (Hemsoth, 
2017), come with a hardware perspective, providing dedicated neural chips.  

The present work focuses on the processing element of the neural 
network – the artificial neuron. There are many hardware neuron models 
reported in the scientific literature. Some of them follow the multilayer 
perceptron model (Minsky et al., 1969), others the Hodgkin - Huxley neuron 
(Hodgkin et al., 1952; Izhikevich, 2003), which exhibits a closer behaviour to 
the biological counterpart. For each case, there are reported various hardware 
solutions using analog (Binas et al., 2016; Indiveri et al., 2015; Neftci et al., 
2011; Rangan et al., 2010; Wijekoon et al., 2008; Indiveri, 2006; 
Cauwenberghs, 1997), digital technologies (Jimenez-Fernandez et al., 2016; 
Matsubara et al., 2013; Gompertz et al., 2011; Ţigăeru et al., 2011; Guangxing 
et al., 2010; Ţigăeru, 2009; Ros et al., 2007; Schoenauer et al., 2002) and mixed 
analog-digital technologies (Wijekoon et al., 2012; Schemmel et al., 2010; 
Heittmann et al., 2002). Each approach has benefits and drawbacks, as structure 
simplicity and power efficiency for the analogue ones, respectively robustness 
and memory support for the digital solutions. In the present paper, it is proposed 
a digital scalable serial-parallel architecture for an artificial neuron, suitable for 
online learning multilayer neural networks implementations. The mathematical 
model of the proposed neuron is discussed in section II, followed in section III 
by a detailed description of its architecture. The section IV concerns the 
functional verification and the implementation of the neuron. For this purpose, a 
set of various FPGA devices were considered, to obtain an extended view about 
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the implementation requirements and performance of the proposed neuron. 
Final comments about the present work are presented in Section V. 

 
2. The Mathematical Model of the Artificial Neuron 

 
The model of the artificial neuron is depicted in Fig. 1. It follows the 

perceptron model that simulates the basic behaviour of the biological neuron in 
a simplified manner.  

 
Fig. 1 – The model of the artificial neuron.  

 
According to this, the artificial neuron gathers to its inputs the neural 

activity produced by the surrounding neurons and computes a net input denoted 
as z, as a weighted sum of its inputs,  
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where: b is the neuron’s bias and gives a measure of how easy a neuron fires its 
neural response and wi – the weight of each neural activity xi, fired by the N – 1 
neurons to which it is connected. 

Subsequently, the net input z is supplied to an activation function f(), 
which is used to compute the response of the artificial neuron, 

 
 zfy  .                                              (2) 

 
The activation function models the firing rate of the electrical impulses 
generated by the biological neuron, which increases proportionally to its net 
input. There are many activation functions for the artificial neurons, but the 
most common ones, used especially in classification applications, are the 
sigmoid function (3) and the hyperbolic tangent function (4), respectively: 
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3. The Architecture of the Artificial Neuron 

 
The proposed architecture of the artificial neuron is tailored to be used 

with the back-propagation error learning algorithm (Rumelhart et al., 1986). 
The architecture is presented in Fig. 2, where it is considered the case of a 
neuron with 16 inputs x0…x15, which could cover a large number of 
applications. The proposed architecture is scalable, neurons with a larger 
number of inputs being able to be implemented by expanding the selection 
block selBlock. 

 

 
Fig. 2 – The architecture of the artificial neuron  

 
The neuron’s inputs takes the neural information x0…x15 from the 

connected neurons, weight them with the individual weights w0…w15 and fires 
the response y according to the equation: 
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where the activation function f() can be selected between sigmoid function and 
hyperbolic tangent function, depending on the neuronType input state. 
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Besides the neuron’s output y, used in the forward phase of the learning 
algorithm, the architecture also provides its derivative, denoted yD, used in the 
backward phase of the learning algorithm. 

All numerical values wherewith the artificial neuron operates use a 
signed 3.12, fixed point S_III.FFFFFFFFFFFF format, where S stands for the 
sign bit, III field represents the integer part, and FFFFFFFFFFFF field 
represents the fractional part of the value, respectively. The adopted format 
confines the numerical values of each neuron’s variable (x, w, z, y) to the [–8.0 ÷ 
÷ +7.999755859375] range, with a precision that ensures the convergence of the 
back-propagation error learning algorithm (Holt et al., 1993). 

The proposed architecture consists of three distinct blocks, which 
implement distinct phases in the computational chain of the neuron’s output. 
The first block, called selBlock selects the inputs xi and theirs corresponding 
weights wi in sequentially groups of 4 input-weight pairs, controlled by the sel 
input value.  Each  selected  group  of  pairs  is  then  supplied  in  parallel  to 
the netInputBlock,  which  accumulates  their  sum  xiwi + xi+1wi+1 + xi+2wi+2 + 
+ xi+3wi+3 and finally updates the net input z value. In the end, the net input z is 
taken by the activationBlock which computes the outputs y and yD, according to 
the selected activation function. 

Subsequently, a detailed description of the main blocks of the neuron 
architecture is given. 
 

3.1. The Selection Block 
 

The structure of the selection block is based on 4 data inputs 
multiplexers mux4 and is depicted in Fig. 3 a. If the application requires a larger 
number of the neuron’s inputs, this block can be augmented with another layer 
of 4 data inputs multiplexers, placed in a tree configuration, keeping the number 
of selection block’s outputs equal to the number of net input block’s inputs.  
 

3.2. The Net Input Block 
 

Its inputs number is equal to the number of input-weight pairs, selected 
by the selection block, which is limited to 4 to accelerate the computation time 
of z. However, for neurons with a large number of inputs, an increase of the 
inputs number of the net input block has to be taken into a consideration, to 
balance the propagation times between this and the selection block. 

The net input block uses a set of arithmetic circuits which perform 
signed fixed point multiplications (multiplier) and additions (adder) 
respectively, which are placed in a tree structure, as is presented in Fig. 3 b. 
Each multiplier truncates the multiplication result to 16 bits, preserving from 
the 32 bits of the multiplication result the sign bit (the MSB bit), [26:24] field of 
bits for the integer part and [23:12] field of bits for the fractional part, 
respectively. Also, to avoid the overflow errors occurring during the 
computation, each adder includes a saturation circuit that bounds its output 
value to [–8.0 ÷ +7.999755859375]. 
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In the output side, netInputBlock has an accumulator structure 
consisting in adder – rpp (where rpp is a parallel data register), to accumulate 
the partial sums xiwi + xi+1wi+1 + xi+2wi+2 + xi+3wi+3, and after that, when all 
groups of input – weight pairs were delivered, to update the z value according to 
the below equation: 

 
4 33
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  

   .                                (6) 

 

 
Fig. 3 – a – The selBlock structure; b – the netInputBlock structure (for the sake of 

simplicity, the clock and reset inputs of the register are omitted). 
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3.3. The Activation Block 
 

The activation block is presented in Figure 4. It consists of 3 main 
circuits, namely sigmaCircuit, which computes the sigmoid function, 
sigmaDCircuit, which computes its derivative and tanhCircuit, which computes 
the hyperboidal tangent function. Besides, activationBlock uses a 16 bits adder 
to compute the derivative of the hyperbolic tangent and two selection circuits, to 
deliver at its outputs the activation function and its derivative values, 
respectively, depending on the neuronType signal value. Thus, if neuronType = 
0, then y = sigma(z) and yD = sigmaD(z) and if neuronType = 1, then y = tanh(z) 
and yD = tanhD(z), where the suffix denoted by D suggests the derivative value. 

 
Fig. 4 – The activationBlock structure.  

 
There are many approximation methods used to implement the sigmoid 

function (Tommiska, 2003), of which the one adopted in this paper is that based 
on PLAN approximation Eq. (7a) (Amin et al., 1997). This method gives a good 
compromise between the consumed resources and precision (Vassiliadis et al., 
2000), according to that, the average error and maximum error, using PLAN 
method to approximate sigmoid function is 0.59% and 1.89% of the [–8,8] input 
range, respectively. 

The structure of the sigmaCircuit is presented in Fig. 5. The two terms 
added in each PLAN equation are provided by shifter circuit and mux4 
multiplexer, respectively, based on the condition signal, which is generated by 
the conditionDetector circuit. This circuit is used to identify the range where the 
absolute value of z belongs. The shifter circuit uses the equivalence between the 
division with power of two and the left shifting operations, to implement the 
multiplication operation, between |z| and the corresponding PLAN coefficients, 
which are nothing else but the unit value divided by various powers of two 
(0.25 = 2–2, 0.125 = 2–3, 0.03125 = 2–5). As an exception, if the condition |z| > 5 
is detected, the shifter outputs a null value.  
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One comment has to be done about the representation of the unity value 
in the proposed architecture. Because it was adopted a 3.12 fixed point format 
to represent all numerical values, some limitations are introduced in 
representation of the numerical values. This affects the unity value 
representation, where the closest value to it is 0.999755859375.   

 
Fig. 5 – The sigmaCircuit structure. 

 
Because the PLAN equations provided in Eq. (7a) are valid only for 

positive values of z, a 16 bits subtractor is involved on the output side of 
sigmaCircuit, to implement sigma function for negative values of z. In this case, 
the sigmoid function has to be computed according to the Eq. (7b). The mux2 
multiplexer decides the output value of the sigmoid function, depending on the 
sign bit of z  Eq. (7c). 
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The sigmoid function has some nice mathematical properties, which are 

exploited in this paper, to build sigmaDCircuit and tanhCircuit, respectively. 
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First property gives the derivative of the sigmoid function, which can be 
computed directly from sigmoid function, according to: 
 

 sigmasigmasigmaD  1                                    (8) 
 
Second property allows the hyperbolic tangent function to be expressed on the 
base of sigmoid function: 
 

12tanh  sigma                                         (9) 
 

And finally, the derivative of the hyperbolic tangent function can be expressed 
using the derivative of the sigmoid function as (10):  
 

sigmaDD  2tanh                                    (10) 
 

 
Fig. 6 – a – The sigmaDCircuit structure; b – the tanhCircuit structure. 

 
These properties stand as foundation to build the sigmaDCircuit presented in 
Fig. 6 a, where mutliplier has the same characteristics as the ones previously 
presented and tanhCircuit presented in Fig. 6 b, respectively and also explain 
the presence of the adder circuit denoted by add, in the structure of 
activationBlock, depicted in Fig. 4. 
 

4. Results 
 
To validate the functionality of the artificial neuron, a set of 

verifications of the proposed architecture were performed.  For this purpose, the 
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proposed neuron was modeled in Verilog and implemented on XC7A100T-
3CGS324C - Artix 7 Xilinx FPGA device, using Vivado Design Suite software 
design environment, produced by Xilinx.  

The first checks were targeted on the functionality of the activation 
block, which uses an approximation method to compute the sigmoid and 
hyperbolic tangent activation functions, and their derivatives, respectively. To 
this end, the post-synthesis simulation results, generated at the outputs of the 
activation block, were saved in a text file to be compared with similar results 
generated by Matlab models of these function, which were considered as ideal 
ones. 

The obtained results are  plotted  in  Fig. 7, for sigmoid function and 
Fig. 8, for hyperbolic tangent function, respectively. As can be seen, there are 
small differences between the ideal functions and the ones which are generated 
by the activation block, which lead to absolute errors a little smaller than 0.02, 
enough to not undermine the functionality of the proposed neuron.  

 
Fig. 7 – The comparison between the ideal and the hardware generated sigmoid 

functions: a – The ideal sigmoid function and its derivative; b – the sigmoid function 
and its derivative generated by the proposed neuron. 
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Fig. 8 – The comparison between the ideal and the hardware generated hyperbolic 

tangent functions: a – the ideal hyperbolic tangent function and its derivative; b – the 
hyperbolic tangent function and its derivative generated by the proposed neuron. 

 
The last comment is proved by the next set of investigations, which 

compare the behaviour of the proposed neuron against an ideal Matlab based 
neuron model, in two testing scenarios, namely the sigmoid neuron and the 
hyperbolic tangent neuron, respectively. In this stage of the verification 
procedure, it were considered a 16 inputs neuron model and 50 sets of random 
generated inputs-weights (x, w) pairs, where x = (x0, x1, …, x15), and w = (w0, 
w1, …, w15). Each inputs-weights pair was successively delivered to the inputs 
of both neuron’s models, after that their outputs were monitored. The obtained 
errors’ graphs, computed as the absolute difference between the hardware 
neuron’s outputs and the Matlab neuron’s outputs, are plotted in the Fig. 9, for 
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the sigmoid activation function, and in the Fig. 10, for the hyperbolic tangent 
function. The maximum values of these errors are summarized in Table 1, 
where y is the error recorded at the y output, and yD is the error recorded at 
the yD output. It can be seen that the errors for the hyperbolic tangent are larger 
than the ones generated for the sigmoid function, due to the hyperbolic tangent 
function is generated using as support the sigmoid function, which leads to an 
error accumulation process. 

 

 
Fig. 9 – The errors of the neuron with sigmoid activation function: a – the graph of the 

error recorded at y output; b – the graph of the error recorded at yD output. 
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Fig. 10 – The errors of the neuron with hyperbolic tangent activation function: a – the     

graph of the error recorded at y output; b – the graph of the error recorded at yD output. 
 

Table 1 
The errors of the proposed neuron  

Case y yD 
Sigmoid function 0.01491 0.01768 
Hyperbolic tangent function 0.03227 0.03621 
 
Finally, the functionality of the proposed neuron was verified into an 

application where a multilayer neural network is used to solve a classical xor 
problem. In the considered test, each neuron use only 3 of 16 inputs (one for 
bias, two to receive neural information) and the structure of the neural network 
consists of two neurons on the input layer, 2 neurons on the hidden layer and 
one neuron on the output layer. Besides the investigated neurons, the 
architecture of the neural network contains another computational blocks, to 
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support online back-propagation learning algorithm, but the description of these 
is beyond the goal of the present paper, being a topic for a future one. 

The neural network was trained, and then validated, in two distinct 
scenarios. For the first one, it was considered neurons with sigmoid activation 
function. In the second one, it was considered neurons with hyperboidal tangent 
activation function. The neural network was implemented in the same FPGA 
device as  the  one previously used and the results were saved and plotted in 
Fig. 11. As can be seen, the results confirm the expected behaviour of the neural 
network, which is able to learn and solve the xor problem after a number of 
training epochs. For the considered problem, the hyperboidal tangent activation 
function seems to offer a better solution than the sigmoid alternative, leading to 
a faster learning process.  

Consequently, all these results validate the functionality of the proposed 
artificial neuron. 

 
Fig. 11 – The results recorded by the neural network for solving xor 

problem (350 epochs). 
 

Another concern of the present work was the implementation 
performances of the proposed neuron on various FPGA devices, including 
MPSoC FPGA type. For this purpose, it was considered a 16 inputs neuron, 
implemented on a set of Xilinx FPGA devices, on which only the ones that gave 
the most representative results are enumerated in Table 2, which summarize the 
consumed logical resources for neuron’s implementation and the maximum 
working frequency, respectively.  

In each considered case, the implementation settings were kept to the 
default values of Vivado Design Suite design environment. Consequently, the 
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reported results are not the most optimistic ones, further improvements could 
being achieved by using another implementation settings and introducing timing 
constraints for critical paths. 

 
Table 2 

Implementation Results 
 

FPGA Device 
 

Consumed Resources 
 

fMAX 
[MHz] 

fMAX 
pipeline 
[MHz] 

Kintex UltraScale + 
xcku5p – ffvb676 – 3 

16nm* 

LUTs: 184/216960 (< 1%) 
DSP Blocks: 5/1824 (< 1%) 

FF registers: 16/433920 (< 1%) 

 
105.9 

128.33 

Zynq UltraScale +  
xczu2cg – sfva625 – 3 

16nm 

LUTs: 184/47232 (< 1%) 
DSP Blocks: 5/240 (< 2%) 

FF registers: 16/94464 (< 1%) 

98.2 108.43 

Kintex UltraScale 
xcku035 – fbva676 -3 

20nm 

LUTs: 184/203128 (< 1%) 
DSP Blocks: 5/1700 (< 1%) 

FF registers: 16/406256 (< 1%) 

62.73 91.82 

Zynq-7000  
xc7z020- 3 

28nm 

LUTs: 230/53200 (<1%) 
DSP Blocks: 5/220 (< 2%) 

FF registers: 16/106400 (< 1%) 

39.66 54.3 

Artix 7            
xc7a100T-cgs324-3  

 28nm 

LUTs: 230/63400 (< 1%) 
DSP blocks: 5/240 (< 2%) 

FF registers: 1 /126800 (< 1%) 

36.77 
 

52.79 

Spartan 7 
xc7s50 – cgs324 – 3 

28nm 

LUTs : 230/32600 (< 1%) 
DSP blocks: 5/120 (< 4%) 

FF registers: 16/65200 (< 1%) 

32.41 46.26 

* technology 
 
Regarding the consumed FPGA’s resources, UltraScale family FPGA 

devices provide better implementation solutions. However, irrespective of the 
adopted FPGA device, the reported results show that less than 1% of the total 
logical resources of any considered FPGA devices are consumed to implement 
the proposed neuron. This suggests there remains enough room to implement 
medium size neural networks on a single FPGA device, using the proposed 
neuron. On the other hand, if a large number of neurons is required by the 
application, a network of multiple interconnected FPGA devices can be 
considered as an implementation option.  

To investigate the maximum working frequency, a neural network with 
two neurons on the input layer and one neuron on the output layer was 
implemented on the considered FPGA devices. The maximum clock frequency, 
to which the considered neural network can operate reliably, is reported on the 
third column of the Table 2. Once again UltraScale family FPGA devices offer 
the highest performance, which is close to 100MHz working frequency, while 
for the other FPGA devices, the performance is about half below. This gap is 
explained by innovations specific to UltraScale+/UltraScale 16 nm/20 nm 
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families, which claim to lead to 2÷5X greater system-level performance over 
other 28 nm FPGA devices. 

Additional improvements can be obtained by enforcing timing 
constrains on critical paths, or by using high end FPGA devices, as Virtex 
UltraScale+.  

A global improvement of the timing performance could be achieved by 
inserting layers of pipeline registers at the outputs of the selection block and 
activation block, respectively. This technique was explored on the proposed 
neuron and the results are reported in the last column of Table 2. Once again, 
timing constrains on critical paths could bring additional performance 
improvements.  

Although the pipeline technique is beneficial regarding the performance 
of the proposed neuron, the decision of using it has to be correlated with the 
solution used in neural work to implement the learning algorithm. Without this 
concern, the overall performance of the implemented neural network can be 
deteriorated. 

 
5. Conclusion 

 
The present paper introduces a digital neuron scalable architecture, 

suitable for online learning multi-layer neural networks implementation. 
Depending on a configuration signal, the neuron model can use one of two 
types of activation functions, namely sigmoid and hyperbolic tangent 
respectively, which are implemented based on PLAN approximation method. 

The functionality of the neuron model has been extensively verified in 
various testing scenarios compared with ideal models and the errors were 
monitored. Their small values confirm the feasibility of the proposed neuron 
which is proved in a multilayer neural network used to solve an xor problem. 

Finally, an analysis of the performance of the proposed neuron model 
implemented on various Xilinx FPGA devices was performed. The obtained 
results indicate the working frequency can be raised above 100 MHz, without 
use of timing constraints. Regarding the implementation resources, the proposed 
neuron requires less than 1% from the total quantity of the FPGA’s logical 
resources, which allows medium size neural networks to be implemented on a 
single FPGA device.  
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ARHITECTURA DIGITALĂ PENTRU NEURON DEDICAT IMPLEMENTĂRII 
HARDWARE A REŢELELOR NEURONALE MULTISTRAT 

 
(Rezumat) 

 
În ultimii ani, reţelele neuronale şi de tip deep learning au atras un interes 

crescut din partea comunităţii ştiinţifice şi a mediului industrial, datorită potenţialului 
lor promiţător în rezolvarea problemelor complexe. Totuşi, implementarea acestora 
pentru aplicaţii în timp real ridică multe probleme, determinate de către cerinţele de 
calcul. Articolul prezent introduce o arhitectură mixtă, de tip serie-paralel, scalabilă, 
pentru neuron adaptat implementării reţelelor neuronale mutistrat, cu învăţare online, 
care poate fi configurat să lucreze cu funcţii de activare de tip sigmoidal, respectiv 
tangentă hiperbolică. Pentru testarea performanţelor sale, neuronul propus a fost 
implementat pe un set de dispozitive FPGA. Rezultatele obţinute după implementare 
indică faptul că acesta necesită mai puţin de 1% din cantitatea totală de resurse logice 
ale dispozitivului FPGA, în timp ce frecvenţa maximă de lucru a acestuia poate fi 
crescută la valori mai mari decât 100 MHz. 


