
BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI
Publicat de

Universitatea Tehnică „Gheorghe Asachi” din Iaşi
Volumul 64 (68), Numărul 1, 2018

Secţia
ELECTROTEHNICĂ. ENERGETICĂ. ELECTRONICĂ

AN EVALUATION SYSTEM FOR CONTESTS AND
CLASSROOMS

BY

ADRIAN ALEXANDRESCU*

"Gheorghe Asachi" Technical University of Iaşi
Faculty of Automatic Control and Computer Engineering

Received: February 19, 2018
Accepted for publication: March 23, 2018

Abstract. Algorithms and programming represent the foundation needed by
every computer science student. During faculty, there are many exams which
imply solving problems and implementing algorithms, and there are also various
contests that require programming skills. This paper takes a look at what is
required to manage a programming contest and at existing solutions for
determining the problem-solving skills of students. Afterwards, a novel
distributed system is proposed for evaluating the quality of problem solutions in
contest and classroom environments. The system components offer a high degree
of extensibility while also providing sufficient choices for evaluating the
capacity of a student to develop algorithms in a contest/classroom setting.

Key words: algorithm evaluation; programming contest; evaluation system;
e-learning.

2010 Mathematics Subject Classification: 68N01, 68Q99.

1. Introduction

In computer science, probably the most important asset is the ability to
understand a problem, to figure out a solution to that problem and to write a
computer program to solve it. In more abstract terms, solving a computer
science problem consists of implementing an algorithm and running that
algorithm on input data in order to obtain as output the solution to that problem.
This ability is tested in programming competitions, in which students compete

*Corresponding author: e-mail: avalexandrescu@gmail.com

68 Adrian Alexandrescu

to solve one or more problem in a given time.
There are several programming competitions but the two most

important are the International Olympiad in Informatics (IOI) ("International
Olympiad", 2017) for secondary school students and the ACM International
Collegiate Programming Contest (ACM-ICPC) ("The ACM-ICPC", 2017) for
university students. Other contests that span over multiple days and involve
algorithmic puzzles include Google Code Jam ("Google Code Jam", 2017),
Facebook Hacker Cup ("Facebook Hacker Cup", 2017) or Amazon TechO(n)
Challenge ("Amazon TechO(n)", 2017).

Obtaining good results at programming contests requires a lot of
practice. In order for the students to prepare for these contests, there are various
websites that have large problem sets and that offer the possibility of evaluating
the quality of a solution for a given problem. There are situations (e.g., ACM-
ICPC) when teams of students compete in contests and are guided by a coach.
Usually, the preparation consists of discussions between the coach and the
students regarding specific topics and solving problems related to those
techniques and methods.

The research presented in this paper focuses on presenting a system that
can be used to improve the student’s algorithmic and programming abilities by
offering an environment in which the student can solve programming problems
from different categories, follow tutorials and explanations regarding various
programming techniques, participate in contests, and propose problems for
other contests in an easy-to-use interface.

The proposed solution takes the best features of existing somewhat
similar solutions, combines them to offer a larger problem set and flexibility in
the scoring and ranking system, and also provides important practical
applications such as the author sandbox and the use of the system in a
classroom setting.

2. Problem Statement

2.1. Programming Contests

A programming contest can be seen from two points of view: the
organizer and the participant. The goal of any contest is to determine a ranking
between the participants. This is also the case for programming contests in
which users try solve a set of problems in a limited amount of time. Usually, the
source code for each problem is uploaded online where it is evaluated and
scored. This job is performed by online judges, i.e., online applications that
handle all the contest aspects.

From an organizer’s perspective, there are several steps that have to be
taken:

1. Choose an online judge,
2. Select the problem set,
3. Specify the contest conditions (e.g., start- and end-times, scoring and

ranking method),
4. Start the contest,

Bul. Inst. Polit. Iaşi, Vol. 64 (68), Nr. 1, 2018 69

5. Show the final ranking.
Choosing an online judge depends on the characteristics of the contest.

There are several good choices but each of them have their pros and cons,
which are discussed in the next sections of this paper.

When selecting the problems there are two options: new vs. existing
problems. The disadvantage of creating new problems is that several people
have to write the problems, write test cases, and make sure that the statement
does not leave room for interpretation and that the test cases cover all the limit
situations. On the other hand, using existing problems has the advantage of
having tried and tested problems, but the severe disadvantage that solutions can
be found online. The latter can be overcome by restricting access only to the
programming language documentation during the contest (this is not always
possible).

Usually, each contest lasts two, three, four or five hours in which
participants must solve five, six, nine or eleven problems, respectively,
depending on the problem difficulty. The scoring for each problem and the final
ranking calculation depends on the contest conditions. This aspect is further
discussed in Section 3 of this paper. In most cases, the winner is the contestant
who solved quickest the most problems.

2.2. Online Judges

An online judge is the means of organizing a programming contest in

which solutions are automatically evaluated. It has several roles: managing
users (contestants and administrators), managing problems, managing contests
(selected problem sets and contest conditions), managing compilation and
execution, and computing the contest/user ranking.

For each problem, the minimal requirements are the problem name and
statement, the input and corresponding output datasets, and the solution
limitations (e.g., time and memory constraints). Optionally, other relevant
information that can be associated with a problem is difficulty, categories (e.g.,
string manipulation, greedy, dynamic programming), solution source code in
various programming languages, and solution description.

When a contestant uploads the source code for the solution of a
problem, the online judge uses the appropriate programming language to
compile and execute the solution in a sandbox environment. All of the online
judges support the C and C++ programming languages, but some of them also
offer support for Java, Pascal, Python and other languages. The solution is
tested using the input datasets associated to each problem and the obtained
output for each dataset is compared to the correct output. A feedback is usually
sent to the contestant depending on the source code being complied
successfully, if there were no execution errors and, for each input dataset, if the
output was correct.

There are restrictions, which are imposed by the sandbox, to what the
uploaded source code can do and access. The program must be written in a
single file, it must not access files and directories other than the input files, it
must not open network connections and it must not perform actions that disturb

70 Adrian Alexandrescu

the judging.

2.3. System Characteristics

The main characteristics of an algorithm evaluation / contest
management system must be:

1. Contest creation with new/existing problems,
2. A large enough existing problem set with source code and solution

description, organized by problem difficulty and type/category,
3. Solution evaluation in a sandboxed environment,
4. Loosely coupled and extensible system components,
5. Multiple scoring and ranking methods with the possibility of seamlessly

adding new ones,
6. Tutorials for beginners (for each problem type, different examples with

problems and also mini-contests),
7. Allowing authors to easily propose problems and communicate with

each other,
8. Possibility of using the system in a classroom setting, for testing the

student’s ability to implement a solution to a problem in a specific
programming language.

3. Analysis of Existing Online Judges

 There are several existing online judges but the most highly used in the
programming contests community are Codeforces ("Codeforces", 2017),
Infoarena ("Infoarena", 2017), Timus ("Timus Online Judge", 2017), TJU
("TJU ACM-ICPC", 2017), UVa ("UVa Online Judge", 2017), VJudge
("Virtual Judge", 2017) and CMS ("CMS", 2017). Table 1 presents a
comparison of the aforementioned online judges based on various criteria that is
relevant to the development of the proposed system. The last online judge is an
open source Contest Management System which has to be installed locally and
does not come with any existing contests or problems, so some of the criteria do
not apply and are marked with N/A.

All of the online judges support at least the C, C++, Java and Pascal
programming languages, two of them support also Python and the rest support
other slightly less used languages.

The focus of the current research is on allowing the creation of custom
contests with, optionally, custom problems. Therefore, in Table 1, the different
aspects that are more relevant to the propose system are marked with bold. An
important aspect is the problem set size because all of the judges allow the
submission of solutions to any of the existing problems at any time. VJudge has
a large problem set size because it acts as an aggregator to multiple online
judges. Basically, when one creates a contest, that person can choose any
problems from a significant list of other online judges (including Codeforces,

Bul. Inst. Polit. Iaşi, Vol. 64 (68), Nr. 1, 2018 71

Timus, TJU and UVa). When a solution is submitted, VJudge forwards that
solution to the corresponding judge and then obtains the result. This approach,
is highly effective because very few judges offer the input and output tests, but
it has the disadvantage of depending on the availability of the other online
judges.

Table 1

Comparison of Seven Online Judges Based on Various Criteria (Values in Bold are
Relevant to the Proposed System)

 Codeforces Infoarena Timus TJU UVa VJudge CMS
supported
languages 15 4 11 4 5 5 7

Periodical
contests

Yes
(~3/week)

Limited
access

Yes
(~3/year)

Limited
access

Yes
(~10/year) No N/A

Problem set
size ~3,500 ~1,900 ~1,100 ~3,100 >5,000 >>10,000 N/A

Custom
contests

Requires
approval Yes No Yes No Yes Yes

Custom
problems

Requires
approval Not anymore No No No No Yes

Access to
problem
source code

Yes (after
contest) Partial No No No No N/A

Access to
problem
input/output

Yes (after
contest) Partial No No No No N/A

Solution
description Partial Partial No No No No N/A

Categorized
problems Yes No Yes No No No No

Allows
questions Yes Yes (forum) Yes No No Yes Yes

Scoring
system Adaptive Time, Points Time Time ~Time Time Point,

Tokens

Special
features

Solution
hacking,

API

Tutorials,
Problem
difficulty
(partial)

Problem
difficulty

Contest
password uDebug

Contest
Aggregator,

Contest
password

Runs
only on

own
server

Ideally, for each problem, it is helpful to have, besides the problem

statement, the solution source code, the input/output datasets, a solution
description and the types of techniques used in solving that problem.
Unfortunately, this is seldom the case. Obtaining that information can be done
either by contacting the administrators of the online judges and asking for the
data, or by relying on the programming community to try to reverse engineer
the input/output datasets from a correct solution to a problem.
Regarding the scoring system, there are three techniques that stand out:
adaptive, time and points. In the first two methods, scores are given only if the
solution passes all the tests (input/output sets). On the other hand, the points
scoring system allows partial scores.

72 Adrian Alexandrescu

 Adaptive scoring: the number of points scored depends on how many
people solved that particular problem. The fewer the people solved it,
the higher the score,

 Time scoring: a penalty is computed for each solved problem as the
number of minutes elapsed from the start of the contest to the moment
when the solution was accepted plus 20 multiplied by the number of
failed attempts,

 Points scoring: for each test or group of tests that pass, a fixed amount
of points is given; usually, if a solution passes all the tests it receives
100 points.
In time scoring, the first ranking criteria is the number of solved

problems and then the contestants are sorted in ascending order by penalty. In
the other two scoring methods, the ranking is obtained by sorting in descending
order the sum of the problem scores.

Another scoring aspect is having tokens, which are used at IOI.
Basically, the contestant sees only partial scores, and, in order to see the full
scores for a problem, he must spend a token. The tokens are generated at fixed
time intervals. Also, the ranking in some cases can be frozen, i.e., in the last
hour the ranking is not updated anymore to keep the suspense.

One important feature that can be included in the proposed system is
solution hacking. During the contest and after locking their submitted solution,
participants have the possibility of looking at other contestants’ solutions and
add testcases for which that solution would be wrong. If this is the case,
penalties and bonuses can be applied to the final score.

4. Proposed Solution

4.1. System Description

The proposed solution is a system for evaluating algorithms and for
organizing contests, which encompasses all the characteristics from Section 2.3.
This is achieved by expanding on the techniques used by existing online judges
and by creating a community in which people can post tutorials regarding
different programming topics and in which authors can share their knowledge to
create better problems.

A starting point for the system presented in this paper is the Contest
Management System (CMS) discussed in the previous section and described in
(Maggiolo & Mascellani, 2017; Maggiolo et al., 2017). Compared to CMS, the
proposed solution reduces the number of required services and web servers and
optimizes communication between the components by means of triggers instead
of periodically making requests. In order to have access to a large problem set,
the system employs the method used by VJudge and allows the creation of
contests that have problems from other online judges. The main difference is
that, once a problem from another judge is used and solved, it is added in the

Bul. Inst. Polit. Iaşi, Vol. 64 (68), Nr. 1, 2018 73

database and it is flagged for input/output test creation. This way, contestants
who solved that problem have the opportunity to contribute to the system by
adding test cases and by providing a solution description. Each contributor
earns reputation points which can be used to unlock certain features, but this
aspect is left for future research.

4.2. System Achitecture

The proposed system has four main components: System Web Server,

Data Manager, Dispatcher and Worker, which communicate by means of
WebSockets and simple Sockets. Due to the fact that the communication uses
triggers and is based on the Observer design pattern, there is a need for a
permanent connection between the four components, which, in turn, removes
the need for a heartbeat pattern, as it was the case at the CMS:

There is a single access point in the system and that is the System Web
Server (SWS). It has four views depending on the user permissions:

 Admin view: user, problem and contest management,
 Author view: sandbox in which author can test the proposed problems,
 Contestant view: view of an ongoing contest
 Observer view: ranking of an ongoing or finished contest

All the business logic is coordinated by the Data Manager (DM). It
handles the communication between the SWS and the Dispatcher, and stores all
the information in a database (optionally, it stores it also in a network file
system). The Dispatcher’s role is to coordinate the submission evaluation and to
give tasks to the workers. The worker compiles and executes each submission
against the corresponding datasets, and returns the submission score. The
worker also has a logic that allows it to kill a task that exceeded the specified
time limit. It is important that each worker processes each submission
sequentially so that the execution time is measured properly.

An example of a communication flow between the contestant and the
system is presented in Fig. 1. The contestant submits a solution to the SWS,
which sends it to the DM who stores it in the database and notifies the
dispatcher that there is a new submission to be evaluated (TASK_SUBMITTED
event). The dispatcher chooses a worker and sends the submission. After the
worker evaluates the submission, it sends the results back to the dispatcher,
which sends it to the DM to be stored in the database. The DM triggers a
TASK_COMPLETE event, and the SWS listens to it and sends the score to the
contestant.

This architecture design was chosen so that the Dispatcher-Worker
components can be replaced with any traditional task processing logic because a
task can be viewed as the process of using a specific compiler, then executing
the code on multiple data sets and comparing the resulting output with the
correct output. The Dispatcher, in its simplest form uses a round robin task
distribution algorithm, but other load balancing techniques can be applied.

74 Adrian Alexandrescu

Moreover, the dispatcher can contain fault tolerance and replication logic, and it
can calculate the execution time as the mean of the execution times on multiple
workers. By using triggers and events, the Dispatcher-Worker logic can be
replaced with a single Worker if there are few contestants and there are few
resources at disposal.

Worker
Worker

Contestant

1. Send solution
submission

2. Store submission task

3. Tr igger
TASK_SUBMITTED event

 4. Send task for evaluat ion

 5. Send compilation/execut ion result

7. Trigger
 TASK_COMPLETE event

6. Store result

System Web Server

Worker Dispatcher

Data
Manager 8. Send score

Fig.1 – Contest submission communication logic.

The Worker logic pseudocode is as follows:

1. Receive the submission id, submission source code, input/output data
sets, the values for the max execution time and the max memory, the
programming language name, and a scoring object.

2. Compile the source code (if it fails then return error).
3. Execute program for each input dataset and feed the output to the

scoring object (if it fails then return error).
4. Send the calculated score for that submission.

The scoring object contains the logic that determines the problem score
based on the obtained output and the correct output. This object implements an
IScoring interface and has configurable implementations for each of the three
previously discussed scoring methods.

In comparison with the CMS, the proposed solution has fewer
components but they have a greater importance. At the CMS if one non-critical
component fails, the other components still function but they will most likely be
in a waiting state. For example, if the EvaluationService component fails then
the Workers function but they have no one to give them tasks. The solution
presented in the current paper removes some of the communication overhead, at
the expense of a slightly lower performance in extreme cases of component
failure.

4.3. Database Structure

 The user, problem, contest and submission information is stored by the
DataManager in a database or a database cluster (large scale environments).
Fig. 2 shows the proposed database structure. There are several fields of type
BLOB in which are stored the source code, the problem description, the input
and output data, and the contest description. An alternative to storing that

Bul. Inst. Polit. Iaşi, Vol. 64 (68), Nr. 1, 2018 75

information in the database is to store only the paths to the actual data on the
hard drive. The user table contains typical user information and a role, which
can be administrator and normal user. Any normal user can propose problems
but they have to go through a validating process and that must be approved by
one of the administrators. All the problem related data is stored in the task
tables. Besides the aforementioned task characteristics, a task can have a
difficulty and one or more categories or tags, in order to help a contest creator to
properly choose the problems that have to be resolved.

In the contest table, there is a type property that encompasses aspects
such as the scoring object, the contest mode (public, private or password
protected) and the ranking mode (live ranking, freeze X minutes before end, or
hidden). After a submission is evaluated by the Worker, the score, statusCode
and statusMessage entries are filled. The latter two values, represent
compilation and execution errors if this was the case.

In its current state, the database does not allow contest enrolment and
user restrictions, which are features of a few online judges. Also, there is no
logging system in place as is the case of the CMS. These characteristics will be
added in the next version of the proposed system.

Fig.2 – Proposed database structure.

4.4. System Deployment

In its simplest form the system can be deployed to a single computer,

but it is recommended that the worker runs on another computer in order not to

76 Adrian Alexandrescu

influence the task execution time. So, there are two scripts that have to run. One
will start the SWS, the DM, the Dispatcher and the database server on one
machine, and the other will start the worker on another machine. When the
worker starts it will automatically register itself to the dispatcher.

The script that starts the worker also installs the prerequisite packages
for compiling and executing programs in various programming languages: GNU
compiler collection for C/C++, Oracle’s JDK for Java, Free Pascal and Python.

5. Conclusions and Future Work

The research presented in this paper consists of:
– a study of existing online judges with their advantages and

disadvantages and a short presentation of what is needed in order to have a
programming contest,

– a novel and highly extensible system for managing programming
contests: users, problem sets, solution evaluation and ranking,

– a tool for authors to manage their proposed problems, to better test
them and to collaborate with other authors in order to increase the quality of the
problems and the input/output datasets,

– a method of applying the system in a classroom environment so that
the student evaluation is quick and objective,

– discussions regarding the issues that can occur in developing the
proposed solution.

The presented system is currently under development and the future
research will firstly consist of addressing other issues, situations, restrictions
and security concerns that will inherently appear. Other future developments
include improvements in the dispatcher (a better load balancing component),
plagiarism detector (solutions for existing problems can easily be found online),
student team support (including team/individual ranking), user reputation points
which unlock access to different features (source code, test cases, solution
description), or a tool for detecting the algorithm complexity by analyzing the
submitted code.

REFERENCES

Maggiolo S., Mascellani G., Introducing CMS: a Contest Management System,
Olympiads in Informatics, 6, 86-99 (2012).

Maggiolo S., Mascellani G., Wehrstedt L., CMS: a Growing Grading System,
Olympiads in Informatics, 8, 123-131 (2014).

* * * International Olympiad in Informatics, 2017. Retrieved from http://www.
ioinformatics.org/

* * * The ACM-ICPC International Collegiate Programming Contest, 2017. Retrieved
from https://icpc.baylor.edu/

* * * Google Code Jam, 2017. Retrieved from https://code.google.com/codejam/

Bul. Inst. Polit. Iaşi, Vol. 64 (68), Nr. 1, 2018 77

* * * Facebook Hacker Cup, 2017. Retrieved from https://www.facebook.com/
hackercup/

* * * Amazon TechO(n) Challenge, 2017. Retrieved from http://challenge.
amazontechon.com/

* * * Codeforces, 2017. Retrieved from http://codeforces.com/
* * * Infoarena comunitate informatică, concursuri de programare, 2017. Retrieved

from http://www.infoarena.ro/
* * * Timus Online Judge, 2017. Retrieved from http://acm.timus.ru/
* * * TJU ACM-ICPC Online Judge, 2017. Retrieved from http://acm.tju.edu.cn/toj/
* * * UVa Online Judge, 2017. Retrieved from https://uva.onlinejudge.org/
* * * Virtual Judge, 2017. Retrieved from https://vjudge.net/
* * * CMS :: Main. Contest Management System, 2017. Retrieved from https://cms-

dev.github.io/

SISTEM DE EVALUARE PENTRU CONCURSURI ŞI SĂLI DE CLASĂ

(Rezumat)

Algoritmii şi programarea reprezintă baza necesară fiecărui student în domenii
precum informatică şi calculatoare. În timpul facultăţii, multe examene şi teste implică
rezolvarea unor probleme şi implementarea unor algoritmi; de asemenea, cunoştinţele
de programare sunt testate la diverse concursuri. Lucrarea de faţă prezintă ce presupune
un astfel de concurs de programare şi face un rezumat al principalelor caracteristici ale
soluţiilor existente de evaluare a capacităţii unui student de a rezolva o problemă.
Principala contribuţie este propunerea unui sistem nou de evaluare a calităţii soluţiei
unei probleme în cadrul unui concurs sau a unei săli de clasă. Sistemul oferă un grad
ridicat de extensibilitate prin independenţa componentelor sale. De asemenea, sistemul
pune la dispoziţia utilizatorului suficiente opţiuni pentru evaluarea capacităţii unui
student de dezvoltare şi implementare a algoritmilor folosiţi pentru rezolvarea anumitor
probleme.

