
BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI
Publicat de

Universitatea Tehnică „Gheorghe Asachi” din Iaşi
Volumul 64 (68), Numărul 1, 2018

Secţia
ELECTROTEHNICĂ. ENERGETICĂ. ELECTRONICĂ

A MODULAR SIMULATION FRAMEWORK FOR
NETWORK-ON-CHIP SYSTEMS USING PYTHON

BY

PAVEL IONUŢ CĂTĂLIN* and VASILE MANTA

"Gheorghe Asachi" Technical University of Iaşi
Faculty of Automatic Control and Computer Engineering

Received: February 19, 2018
Accepted for publication: March 23, 2018

Abstract. The need to incorporate more features on silicon chips requires
new means to evaluate the system behaviour. Simulation tools become
indispensable in analyzing performance during the design phase. A closer look at
the available tools reveals some existing solutions that are unfortunately hard to
deploy and adapt for all the situations encountered. This paper proposes a new
tool to aid in the simulation of such systems, in particular systems that are using
Network-on-Chip technologies. The tool is written in Python and it offers a
framework to analyze different aspects involved in the design of a Network-on-
Chip, such as node placement and routing algorithms. The proposed framework
allows adding more features on the way due to a modular design approach.

Key words: System on Chip; Network on Chip; Python; Simulation; Router;
Port; Multi-core; Many-core.

2010 Mathematics Subject Classification: 68N01, 68Q99.

1. Introduction

1.1. Insight Into the Topic

Since the need for miniaturization, increased processing power and
efficiency in modern computational devices, including phones, tablets and
desktop computers is ever growing, more and more ways to achieve and sustain
these demands are constantly developed. One of these methods consists in the

*Corresponding author: e-mail: ionut.catalin.pavel@webmail.tuiasi.ro

80 Pavel Ionuţ Cătălin and Vasile Manta

integration of all the computing subsystems on the same chip (memory, I/O,
special adapters, etc...), the resulting product being known as a “System on
Chip” (SoC). Since more and more dedicated blocks are required in these
devices, blocks that include many microprocessors, graphics processors, various
memories, sound processors and others, the usual way of making
interconnections between these blocks, which consisted of bus based
interconnection and crossbar switches, fall short when scalability and future
improvements come into play. Also when we are dealing with billion transistor
chips, it becomes impossible to send signals across the chip within real time
bounds (Jantsch & Tenhunen, 2003). If we use a global clock signal to
synchronize different signals we become more prone to electromagnetic
interference (EMI). The traditional way was to design critical paths and clock
distribution trees (Kumar, et al., 2002). This makes the current implementations
power hungry and difficult to manage due to clock skew issues (Arteris, 2005).

The solution for these scalability problems comes in the adaptation of
network systems to work on a small scale, and connect the various blocks inside
a SoC. These networks also bear the name “Network on Chip” (NoC).
However, with the adaptation of such technologies, new and challenging
problems come into play, problems as network topology and routing algorithms.

1.2. Network on Chip structure

In a NoC interconnection, units are connected via a scalable

homogenous system. Units communicate with each other using messages
(usually called packets). In Fig. 1 we can see a simplified schematic of a NoC
type interconnect inside a SoC.

Fig. 1 – Simplified view of a NoC system.

Because in a NoC system there can be more than one simultaneous data

path, it is usually required to have dynamic routing and decision making for
determining the traffic direction. One key feature of these kinds of systems is

Bul. Inst. Polit. Iaşi, Vol. 64 (68), Nr. 1, 2018 81

the scalability and the layering. The scalability ensures compliance with the
changes in the silicon manufacturing processes and the layering assures a higher
level of abstraction between different parts of the network protocols. These
systems are basically a scaled down version of wired computer networks, and
usually employ the same terminology for describing various parts of the
network such as:

1º Routers: Redirect the incoming packets based on a set of rules that
are dependent on the network topology.

2º Ports: Are attached to the router and usually contain buffers to aid in
the packet transmission scheme.

3º Links: Are the physical wires that make the connection between
ports.

4º Processing Units: These are the actual masters or slaves present
inside the SoC. These are also attached to the Routers using some sort of local
connection scheme that may be the same as in the general case.

1.3. Comparison Between Classical Bus and NoC Systems

 In Table 1 we can see the main benefits and downfalls regarding the 2
technologies (Bjerregaard & Mahadevan, 2006).

Table 1
Benefits and Downfalls

Bus NoC
Every unit adds parasitic capacitance,

therefore electrical performance degrades
with growth.

- + Performance is not degraded with
scaling.

Bus timing becomes difficult as the
feature size decreases.

- + Links can be pipelined.

Bus arbitration can become a bottleneck.
If there is more than one master, the
others must wait for the active one to

complete its transaction.

- + Distributed routing.

The bus arbiter is specific for the
instantiated block.

- + The same router can be re instantiated in
other part of the network.

Testability is slow. - + Locally placed boundary test and scan is
fast and offers good coverage.

Bandwidth is shared by all the units
attached.

- + Bandwidth scales with network size.

Latency is the same as the wire speed
once control is taken by the bus master.

+ - Internal network congestion may cause
latencies.

Compatibility with a vast amount of
existing IPs.

+ - Bus oriented IPs need wrappers.

Simple concept. + - Needs reeducation.

 To facilitate the development of such systems, several dedicated
analysis and simulation tools are available. These are often developed by the
scientific community. The industry also participates in the development of such

82 Pavel Ionuţ Cătălin and Vasile Manta

tools. By classification there are usually 2 types of tools used for this task: (i)
synthesizers and (ii) simulators. Synthesizers are used to generate the hardware
system given a set of design constraints or rules. These are usually commercial
solutions and are used to model all the stages in the design of a SoC. These are
usually characterized by the performance of the output they give (gate count,
energy consumption) and the level of abstraction required in the design. The
higher the level of abstraction, the easier the design task becomes. Some
commercial synthesizers are: “FlexNOC” from Arteris (Arteris), “INOC”
(iNoCs) and “The Tool Suite Works CHAIN” from Silistix.

Simulators are usually used to estimate the system performance before
actual design. These estimations often include power consumption estimations,
gate count estimations, routing algorithm performance and others. Because
these systems usually have very restrictive constraints, simulation is a must in
the design of NoCs. More information about the available simulators can be
observed in Table 2 (Achballah & Saoud, 2013).

Table 2
Available Simulators

Tool Year Developer
NS-2 1995 DARPA and later Contributors

Noxim 2010 Catagne University
DARSIM 2009 MIT

SunFloor – 3D 2006 - 09 EPFL (swizerland)
ORION 1 and 2 2003 - 09 Princeton University

INSEE 2005 Basque University (Spain)
ATLAS 2005 Federal University of Brazil
NOCIC 2004 Massachussetts University

Pestannna Environment 2004 Phillips Research Laboratories
PIRATE 2004 Polytechnique School of Milan

SUNMAP 2004 Stanford University
xpipesCompiler 2004 Bologne University – Stanford

University
µSpider 2004 Bretagne Sud University
OCCN 2004 ST microelectronics

NoCGEN 2004 University of New South Wales
FlexNoC – ARTERIS

iNoC – iNoCs
The CHAIN works tool suite – Silistix

2. A NoC Simulation Framework Written in Python

2.1. Motivation

Since NoCs are fairly complex, pre design analysis is a must, and, as

explained in the previous chapters, there are many topics that could have a great

Bul. Inst. Polit. Iaşi, Vol. 64 (68), Nr. 1, 2018 83

effect on the performance and the potential of the network. Simulating the
network pre design has become the norm. The simulation can be accomplished
using various tools, as the ones presented above, however most of those tools
lack some certain features and prove hard to reconfigure to support new
features. They also are written in various programming languages that require a
greater deal of knowledge in using, and they usually have hard to fix
dependency issues. Because of this, in the following pages a new model for a
simulation tool is proposed. The tool is completely written in Python without
any external dependencies, the only prerequisite is having a working version of
the Python interpreter installed. This also facilitates multi platform development
since Python code is portable across platforms. At the current moment, the tool
supports only a small subset of the NoC methodologies, mostly deterministic
routing, dynamic routing and packet routing.

The whole idea is to provide a scalable framework that is easy to extend
to various architectures and methodologies while providing a basic platform for
the most common used elements. The simulation is at a basic implementation
state, only some basic simulations could be performed. The features supported
are the following:

a) single clock domain;
b) multi network simulations;
c) various topologies (created by the developer);
d) various routing algorithms (created by the developer);
e) processing element simulation (created by the developer);
f) multiple router types;
g) multiple routing algorithms (provided by the developer).

2.2. Test Case and Simulation Results

After the base framework realization, a small test script was required to
proof the functionality of the simulator. To realize this test, a network had to be
defined. In Fig. 2, the proposed network and the used routing algorithm can be
seen. The algorithm routes the packets based on the coordinates inside the
router matrix. At first a delta is performed and the packet is moved in the
direction that decreases this delta value. This type of algorithm is known as the
XY algorithm. After the network was created, it was simulated for a number of
10 clock cycles, exchanging packets between the MEM and the CPU node.

In Table 3 we can observe a list of events that took place during the 10
cycles of the simulation. We can observe the latency introduced by the network.
The delay is exactly 6 cycles which corresponds with the number of links the
message has to go from the source port to the destination port. For better
visibility, the nodes send different positive and negative integers.

84 Pavel Ionuţ Cătălin and Vasile Manta

Table 3
Simulation Results

Network
cycle

Event 1 Event 2 Event 3 Event 4

1 CPU sends to MEM
value 0

MEM sends to
CPU value 0

2 CPU sends to MEM
value 1

MEM sends to
CPU value -1

3 CPU sends to MEM
value 2

MEM sends to
CPU value -2

4 CPU sends to MEM
value 3

MEM sends to
CPU value -3

5 CPU sends to MEM
value 4

MEM sends to
CPU value -4

6 CPU sends to MEM
value 5

MEM sends to
CPU value -5

7 CPU receives from
MEM value 0

CPU sends to
MEM value 6

MEM receives
from CPU value 0

MEM sends to
CPU value -6

8 CPU receives from
MEM value -1

CPU sends to
MEM value 7

MEM receives
from CPU value 1

MEM sends to
CPU value -7

9 CPU receives from
MEM value -2

CPU sends to
MEM value 8

MEM receives
from CPU value 2

MEM sends to
CPU value -8

10 CPU receives from
MEM value 3

CPU sends to
MEM value 9

MEM receives
from CPU id 3

MEM sends to
CPU id 9

Fig. 2 – Test network and routing algorithm.

Bul. Inst. Polit. Iaşi, Vol. 64 (68), Nr. 1, 2018 85

3. Conclusion

Although the simulation is still in the development phase, the partial

results obtained in the simple test simulation show that the idea can be
expanded to many situations encountered in the development phases of the
system. The usage of a popular and relatively easy to learn programming
language as Python, makes the implementation of new features very easy
because of the modular design, and removes any external module dependency
issues that are present in other simulators. More features and improvements are
planned for the future, some of these will include, but not limited to: time based
simulation, predefined collection of routing algorithms, network generator
based on classic topologies and a better event logger.

REFERENCES

Achballah A.B., Saoud S.B., A Survey of Network-On-Chip Tools, International Journal
of Advanced Computer Science and Applications, Vol. 4, No. 9 (2013).

Bjerregaard T., Mahadevan S., A Survey of Research and Practices of Network-on-Chip,
ACM Computing Surveys, 2006.

Jantsch A., Tenhunen H., Network on Chips, Kluwer Academic Publishers, Boston,
2003.

Kumar S., Jantsch A., Soininen J.P., Forsell M., Millberg M., Oberg J. et al., A Network
on Chip Architecture and Design Methodology, IEEE Computer, 117-124,
2002.

* * * A Comparison of Network-on-Chip and Buses, Arteris, 2005.
* * * Arteris. (n.d.). Retrieved November 15, 2016, from www.arteris.com:

http://www.arteris.com/flexnoc
* * * iNoCs. (n.d.). www.inocs.com. Retrieved November 15, 2016, from

www.inocs.com

UN ECOSISTEM MODULAR PENTRU SIMULAREA REŢELELOR
INTEGRATE FOLOSIND LIMBAJUL DE PROGRAMARE PYTHON

(Rezumat)

Această lucrare prezintă un ecosistem software pentru simularea sistemelor de

interconexiuni pe chip de tipul Noc (Network-on-Chip). Acest simulator este creat
folosing limbajul de programare Python. Acest lucru vine ca o alternativa la sisteme de
simulare deja existente, dar care sunt afectate de anumite probleme, în special legate de
disponibilitate şi de funcţiile suportate. Sistemul propus este uşor modificabil având în
vedere structura modulară pe care este construit.

In finalul lucrării este prezentat un exemplu simplu de simulare obţinut cu
ajutorul utilitarului. Rezultatele obţinute încurajeaza dezvoltarea in continuare şi
adaugarea de noi funcţionalităţi.

