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Abstract. The linear quadratic optimal model following problem with finite 
final time and free end point for a drive system is studied. A technique to achieve 
reduced energy consumption and an adequate behavior of the drive system by 
imposing the dynamic of the system near to a chosen model one is presented. 
The study takes into account the influence of the exogenous variables (e.g. initial 
state and load torque), using some previous results of the authors. For the load 
torque, a step variation in the transient time is considered. Such circumstances 
are often met in the electrical drive systems, when the no-load or small load 
torque is switched to a great one. The influence of the erroneous estimation of 
the load torque or of the switching moment is considered. The applicability of 
the proposed algorithm is validated by simulation tests. 

 

Key words: electrical drive; different motors; variable load torque; 
imposed dynamics; linear quadratic optimal problem. 

 
 

1. Introduction 
 

Imposing a certain dynamic behaviour is one of the most interesting 
approaches to design an automatic system due to the possibility to force the 
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desired performances. For example, one can impose for the system to have a 
dynamic behaviour similar to a chosen model. The model could exist in the 
control system or could be an implicit one, whose behaviour must be followed.  

The paper deals with optimal implicit model following control of a 
voltage controlled drive system with variable load torque. Of course, a general 
algorithm for a variable torque can be established, but the implementation is 
significantly easier for a constant load torque. Therefore, a suboptimal solution 
can be obtained if the variation of the load torque in the transient period is 
approximated with a step function. Such situations are frequently met in the 
electrical drive systems, when the no-load or small load torque is followed by a 
great one. Examples for such operation are the rolling mills, or cutting processes.  

A linear electrical drive system is described by the state equation 

 
0

0( ) ( ) ( ) ( ), ( )
( ) ( )

x t Ax t Bu t w t x t x
y t Cx t

   




 (1) 

where:  ( ) ( ) ( ) Tx t t i t   is the state vector (T denotes the transposition), 

 ( ) 0 ( )T
aw t w m t  is the disturbance vector (with ( )m t  the load torque) and 

( )t  is the rotor speed. The variables i and u are the rotor current and voltage in 
the case of a brushed d.c. motor. For synchronous and asynchronous motors, i and 
u correspond to the q current and voltage components and similar equations may 
be adopted with adequate assumptions. The matrices , ,A B C  are in the form 

  11 12

21 22 2

0
, , 1 0

a a
A B C

a a b
   

     
   

, 

where: 11 12 21 22 2, , , , , aa a a a b w  are constant which depend on the parameters of 
the motor and load. 

The aim of the optimal control is to achieve reduced energy 
consumption and an acceptable behaviour of the system (Cavallaro et al., 2002; 
Kurihara & Rahman, 2004; Lorenz, 2006; Sheta et al., 2009; Takami, 2006; Xu, 
2012; Yang & Zou, 2013). A way to reach these goals is to impose to the 
system a dynamic near to a chosen model one. For this one can introduce the 
term ( ) ( ), m my t Ly t L    in the performance criterion (Tyler, 1964). A more 
convenient way is to use the term ( ) ( ), n nx t Lx t L    in the criterion, because 
this offers more possibilities in the choice of the dynamic behaviour of the 
model (Botan & Onea 1999; Li & Yu, 2009; Shibasaki et al., 2015). Indeed, in 
the first variant, the order of the model is limited at the number of the outputs. 
However, the both indicated ways are properly only for the free response of the 
system, because the model do not includes the influence of the control ( ).u t  
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Moreover, for many applications, such as the electrical drive system, it is 
essential to consider the influence of the disturbance (e.g. the load torque) on 
the system and also on the model. Consequently, it is useful to introduce a term 
depending on the errors between the model and the system in the form 

( ) ( ) ( ) ( )x t Lx t Bu t w t   . Starting from the above remarks, the following 
quadratic criterion was adopted: 

 

  
    

0

1

2

1 ( ( ) ) ( ( ) )
2

1 [ ( ) ( ) ( ) ( )] ( ) ( ) ( ) ( )
2

( ) ( ) ( ) ( ) d ,

f

T
f d f d

t
T

t
T T

d d

J x t x S x t x

x t Lx t Bu t w t Q x t Lx t Bu t w t

x t x Q x t x u t Pu t t

   

       

   

    (2) 

where: dx  denotes the desired value of the state. The matrices from the criterion 
have appropriate dimensions and 0S  , 1 0Q  , 0P  . 

The optimal control problem refers to the system (1) and criterion (2). 
In order to ensure a small transient period, a finite final time was adopted in the 
performance criterion.  

The solution of the problem is similar to that of the LQ optimisation 
problem with finite final time and the result is a time variant controller (Athans & 
Falb, 1966; Anderson & Moore, 1990). The paper proposes a different solution 
based on previous research of the authors (Botan et al., 2008; Botan & Ostafi, 
2012) and leads to an easier implementation. 

 
2. Main Results 

 
The hamiltonian for the above formulated model following problem is: 

 
1

2

1 [ ( ) ( ) ( ) ( )] [ ( ) ( ) ( ) ( )]
2

1 1[ ( ) ] [ ( ) ] ( ) ( ).
2 2

T T

T T
d d

H x t Lx t Bu t w t Q x t Lx t Bu t w t

x t x Q x t x u t Pu t

       

   

 
 (3) 

The Hamilton equations lead to: 

 * 1( ) ( )Tu t P B t   , (4) 

 2( ) ( ) ( )T
dt Qx t Q x A t     , (5) 

with the final condition 

 ( ) [ ( ) ]f f dt S x t x   , (6) 
where: 
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 1 2
ˆ ˆ ˆ;TQ A Q A Q A A L    . (7) 

The classical solution is achieved imposing a linear dependence 
between the co-state and the state vectors as ( ) ( ) ( )t R t x t    and the solution to 
the problem is in the form (Athans & Falb, 1966; Anderson & Moore, 1990):  

 1( ) ( ) ( )Tu t P B R t x t   , (8) 

where: ( )R t is the time-variant solution to a Riccati differential equation. Since 
this matrix is time-variant, the optimal controller is also time-variant. This 
implies a difficult implementation. Moreover, the Riccati equation must be 
integrated in inverse time, starting from the final condition 

 ( )fR t S . (9) 

This paper proposes another type of dependence instead of (8) (Botan et 
al., 2007; Botan & Ostafi, 2012): 

 ( ) ( ) ( ) ( )t R t x t v t   ,  (10) 

with ( ) nv t  and R a n  n symmetrical constant matrix. 
From (1), (4), (5), and (10) one obtains: 

 2( ) ( ) ( ) ( ) ( ) 0T T
dRNR RA A R Q x t v t RN A v t Rw Q x         .  

The previous relation must be true for any ( )x t  and ( )v t , hence: 

 0TRNR RA A R Q      (11) 
and 

 2( ) ( ) ( )Tv t F v t Q x Rw t    ,  (12) 

where: 
 1 andTN BP B F A NR   .  (13) 

The final condition leads to: 

 ( ) ( ) ( )f f dv t S R x t Sx   .  (14) 

The optimal control variable *( )u t  can be written as: 

 *( ) ( ) ( )f cu t u t u t  ,  (15) 

where the feedback component can be computed with 

 1( ) ( )T
fu t P B Rx t    (16) 
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and the corrective one is 

 1( ) ( )T
cu t P B v t  .  (17) 

The matrix R is the solution to the Riccati algebraic equation (11) and 
optimal corrective vector ( )v t  is the solution to the time-invariant linear 
differential equation (12), with the final condition (14). The feedback component 
is identical with the optimal control law obtained in the similar optimal problem, 
but with infinite final time. The corrective component ensures the identity 
between the control *( )u t  given by (15) and the control obtained if the constant 
vector ( )t is adopted in the form (10). As one can see, the corrective component 
depends on the final condition ( )fx t , but the only known value at the beginning 
of the optimisation process is 0( )x t . Therefore, it is necessary to replace the final 
condition (14) by one depending on the initial condition. On this purpose the 
above differential equations for ( )x t  and ( )v t are rewritten as: 

 
( ) ( ) ( )

,
( ) ( ) ( )

x t x t w t
G

v t v t z t
     

      
     




  (18) 

where:  

 
0 T

F N
G

F
 

  
 

 (19) 

and 

 2( ) ( )z t Q x Rw t  . (20) 

One can prove (Botan, 1992) that the transition matrix for G is 

 12( , ) ( , )
( , ) ,

0 ( , )
f f

f
f

t t t t
t t

t t
  

    
 (21) 

where: ( , )ft t and ( , )ft t  are the transition matrices for F and TF  
respectively, and  

 12 ( , ) ( , ) ( , )d .
ft

f f
t

t t t N t        (22) 

Taking into account the form (21) for the transition matrix, the state 
vector can be written as: 
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12

12 12 2

( ) ( , ) ( ) ( , )

[ ( , ) ( , ) ] ( )d ( , ) d ,
f f

f f f d

t t

f f f d
t t

x t M t t x t t t Sx

t t t t R w t t Q x

  

       
 (23) 

where 

 12( , ) ( , ) ( , )( )f f fM t t t t t t S R    . (24) 

From (23) and (14), the vector ( )fv t  can be expressed in terms of 

0( )x t . Finally, the corrective vector ( )v t  can be computed as: 

 0 0 0 12 0 2 0 1( ) ( , ){ ( , )[ ( ) ( , ) ( , )] } ( , )f f d f d fv t t t V t t x t t t Sx g t t Sx g t t       (25) 

where 

 1( , ) ( , ) ( )d
f

t

f
t

g t t t z     , (26) 

 
0

2 0 12( , ) [ ( , ) ( ) ( , ) ( )]d
f

t

f
t

g t t t w t z        , (27) 

 1
0 0 0( , ) ( , )( ) ( , )f f fV t t t t S R M t t   .  (28) 

The solution can be achieved only if the vector ( )z t  is known on the 
optimization interval 0[ , ]ft t ; it means that the shape of the disturbance ( )w t  
must known and its magnitude at the initial moment 0t  must be available 
(measured or estimated). For simplicity, in the sequel, the disturbance will be 
considered constant on the optimization interval and therefore the exogenous 
vector ( )z t is constant too. These constant vectors can be extracted from integrals 
and the computation is simplified. A part of remaining integrals have a constant 
value, which can be established beforehand and not in real time computation: 

 1
,( )d [ ( , ) ]( )

s

j

t

j j s
t

t t t I F       , (29) 

 1( , )d [ ( , )] , ( ) .
s

j

t
T T T

j j s
t

t I t t F F F        (30) 

The advantages which appear for constant disturbance can be extended 
for variant disturbances if they have a step function form or if an approximation 



Bul. Inst. Polit. Iaşi, Vol. 64 (68), Nr. 2, 2018                                        89                                         
 

 

with a piecewise constant function is used. In these cases, the estimation of the 
disturbance in the first sampling periods is necessary. 

The cases when the load torque has a step variation during the transient 
period, from a small operation to another great value are frequently met in 
electrical drive systems; in many situations, it is possible to know beforehand 
the two values of the torque and the switching moment. Therefore, we shall 
presume that the load torque has two constant values: 1m  for 0[ , ]t t   and 2m  
for [ , ]ft t  . Consequently, the disturbance vector w has the values 1w  and 2w  
and the vector z given by (20) has the values 1z  and 2z  on these two intervals. 

In this case, from (26) and (27) one obtains: 

 
1 2 0

1

2

( , )d ( , )d ,

( , )

( , )d ,

f

f

t

t
f t

f

t z t z t t

g t t

t z t t








           
 

      


 


 (31) 

    
0

2 0 1 12 1 2 12 2( , ) [ ( , ) ( , ) ]d [ ( , ) ( , ) ]d
ft

f
t

g t t t w t z t w t z




                 (32) 

The most previous relations can be computed off line and only two 
elements (the matrix (.)  and the vector 1( , )fg t t ) have to be computed in real 
time. Both elements can be iteratively obtained (Botan & Ostafi, 2012). 

 
3. Simulation results 

 
Different simulations were performed for an electrical drive system with 

 
0.03 18.6 0

,
3.5 19.38 6.25

A B
   

       
. 

The matrices 1 2, , , ,S Q Q P L from criterion (2) and the final state are 
chosen based on the following considerations (Botan & Onea, 1999): 

– [ 0]T
d dx    because the interest is to penalise the big values of the 

current ( )i t and not ( )di i t . 
– 1diag( ,0)S s is chosen in order to select a desired weight of the final 

error ( )f dt  ; 
– 1Q  and 2Q  are chosen in order to impose 1 2diag( , ) 0Q q q  ; 
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– 2 2xL R  is chosen in order to obtain a certain imposed behaviour for 
the state. For instance, L was chosen in the same form as the matrix A, but with 
a smaller value for rJ . 

The simulations were done for 25rad/s,d   diag(20,0),S   

1 diag(0.5,1),Q  2
1 1.25

,
1.25 693.8

Q
 

   
1,P p 

0.1 56
3.5 19.4

L
 

    
, 0 0,t   

0.3ft s . The sampling period is 2ms in all cases. 
The control variable, angular speed and current variations are presented 

in all figures. The Fig. 1 shows the behaviour of the optimal drive system for 
constant load torque in the transient period ( 0.8Nmm  ). Fig. 2 presents the 
behaviour of the optimal system when the load torque switches from 0.4Nm to 
1.5Nm at the moment 0.15st  . 

The influence of the erroneous estimation of the torque or of the 
commutation moment is indicated in Fig. 3, 4 and 5, respectively. The 
continuous curves are for correct estimation and the dashed curves are for 
erroneous estimation. In the first two cases, the step variation is produced at the 
moment t = 0.15s and the load torque has the erroneous estimated values smaller 
than the real ones (0.2 Nm and 1 Nm instead 0.4 Nm and 1.5 Nm) or the same 
mean value as the true ones (0.7 Nm and 1.2 Nm instead 0.4 Nm and 1.5 Nm). 

The second situation is for a correct estimation of the torque (the values 
are 0.4Nm and 1.5 Nm), but the real moment t = 0.15 s of the commutation is 
estimated at t = 0.2 s.  

 

 
Fig.1 – Optimal system behaviour in the case of a constant load torque. 
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Fig. 2 –System behaviour for m = 0.4 Nm and m = 1.5 Nm;  
switching moment t = 0.15 s.  

 

 
 

Fig. 3 – Erroneous estimation of the load torque – estimated values smaller than the true 
ones (true: 0.4; 1.5 Nm; estimated: 0.2; 1 Nm; switching moment at 0.15 s). 

 
The performance criterion and the energy losses were computed in all 

simulated tests. Because the behaviour is non optimal in the case of erroneous 
estimations, the performance criterion increases in comparison with a correct 
one; the differences are not high for reasonable error estimation. The energy 
losses can decrease for erroneous estimation, because the optimization criterion 
takes also into account other aspects, like different errors of the state variables. 
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Fig. 4 – Erroneous estimation of the load torque – the same mean value  
(true: 0.4; 1.5 Nm; estimated: 0.7; 1.2 Nm; switching moment at 0.15 s). 

 
 

Fig. 5 – The case of erroneous estimation of the switching moment  
(0.2s instead of 0.15s); m=0.4; 1.5Nm. 

 
 

4. Conclusions 
 

The paper studies an optimal model following problem for a voltage 
controlled drive system. For the case when the exogenous variables are 
beforehand known, or one knows its shape, and the amplitude is estimated at the 
beginning of the optimization process, a convenient algorithm is presented.  
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The problem is studied as a linear-quadratic optimal one with finite 
final time and free end point. A way to use a time-invariant controller is 
indicated. This controller computes a usual constant feedback component and a 
corrective component, which depends on the initial state, the desired value of 
the final state and the disturbance. 

The behaviour of the optimal drive system for step variations of the 
load torque in the transient period is studied and the influences of the erroneous 
estimations are analyzed. 

The simulation tests show the effectiveness of the proposed control 
system.  
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PROBLEMA URMĂRIRII OPTIMALE A MODELULUI PENTRU UN SISTEM DE 

ACŢIONARE ELECTRICĂ CONTROLAT ÎN TENSIUNE 
 

(Rezumat) 
 

Se studiază urmărirea optimală a modelului pentru o problemă cu timp final 
finit şi stare finală liberă. Se prezintă o metodă de reducere a consumului de energie şi 
de obţinere a unei comportări adecvate a sistemului de acţionare, impunând ca acesta să 
aibă o dinamică asemănătoare cu a unui model convenabil ales. 


