
BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI 
Publicat de 

Universitatea Tehnică „Gheorghe Asachi” din Iaşi 
Volumul 64 (68), Numărul 3, 2018 

Secţia 
ELECTROTEHNICĂ. ENERGETICĂ. ELECTRONICĂ 

 
 
 
 
 

 
 
 
 
 
 

OPTIMAL CONTROL OF AN ELECTRICAL DRIVE SYSTEM 
WITH CURRENT CONTROLLED INDUCTION MOTOR 

 
BY 
 

CORNELIU BOŢAN*, VASILE HORGA and MARCEL RĂŢOI 
 

”Gheorghe Asachi” Technical University of Iaşi 
 

Received: September 5, 2018 
Accepted for publication: October 10, 2018                    
                                                                                                                                                                                   

Abstract. The paper deals with an optimal control problem from the 
energetic point of view of the transient state of an electrical drive system with 
induction motor. A connection between the minimum energy problem and the 
maximum torque one is indicated. A detailed solution for a current controlled 
system is presented for the minimum energy control. Simulation results are 
indicated. 
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1. Introduction 
 

 The paper deals with an optimal control (Anderson & Moore, 2007; 
Athans & Falb, 2007) of an electrical drive system with induction motor. This 
problem is important because it is possible to ensure a significant energy saving, 
or other advantages, depending on the adopted criterion. There are numerous 
studies dedicated to this problem, for different types of motors, control 
strategies, criteria, or used methods (for instance, we mention (Cavallaro et al., 
2002; Kurihara & Rahman, 2004; Boţan et al., 2007; Mesemanolis et. al., 2012; 
Yang & Zou, 2013), but many other papers can be indicated). The optimization 
is appreciated as a main direction of the developing of the electrical drive 
systems in the future (Lorenz, 2006).  
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The optimization problems can be formulated referring to steady state 
(Dong & Ojo, 2006; Kim, 2017; Boţan, 1984; Kusko & Galler, 1983) or to the 
dynamic operation of the drive system. The problems formulated in the first 
case impose minimization of the cooper and iron losses power. Also, the 
maximum torque (per ampere or per volt) problem is considered. It should be 
noticed that the torque is imposed in steady state by the load and, in fact, the 
problem is to ensure an imposed torque with a minimum stator current (or 
voltage), similar with the minimum losses problem. 

The optimal control of electrical drive refers to the transient period and 
different problems are formulated in this case. A first one is the minimum 
energy (not minimum power as in steady state) problem, with different variants 
(Abrahamsen et. al., 1998; Ta & Yori, 2001; Abrahamsen et. al., 2001). The 
minimization of the energy consumption is practically equivalent with the 
minimization of the energy losses. Only cooper losses are usually considered, 
because they significantly overcame the iron losses in the transient operation 
and the solution is simpler in this approach. The minimization is performed 
having in view the system moving equation and the formula of the 
electromagnetic torque for the used motor. Another problem is the 
maximization of the torque. If this problem is formulated in condition of an 
imposed maximal cooper losses (heating), it is in connection with the previous 
one (losses minimization).  

If the same problem is formulated in the condition of the stator current 
limitation, a connection with the minimum time problem (Chang & Byung, 
1997; Vega et al., 2006) can be obtained. This last problem imposes to establish 
the control which ensures the fastest achieving of the desired speed in condition 
of limitation of the control variable. Such a problem is of interest especially for 
the positioning systems. 

The control of an electrical drive must be chosen so that to obtain a 
small energy losses and an acceptable behaviour of the system. The demands 
and conditions for different applications are not the same and therefore, one can 
formulate different optimal control problems for an electrical drive system. In 
addition to the mentioned aspects, the type of the terminal conditions, including 
the terminal time, imply different solutions control (Anderson & Moore, 2007; 
Athans & Falb, 2007). 

The paper indicates the connection between the minimum energy and 
maximum torque problems and develops a solution for the first one. The 
problem is discussed for the current control in a rotor flux oriented structure of 
an induction motor (Kim, 2017; Kelemen & Imecs, 1989; Boldea & Nasar, 
1992). 

 
2. Problems Formulation 

 
The moving equation of the electrical drive system is  

 1
1( ) ( ) [ ( ) ( )], [0, ]
J rt f t m t m t t T     ,    (1) 
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where: ω is the rotational speed, J – the system inertia, m(t) – the 
electromagnetic torque and mr(t) – the load torque. The torque of an induction 
motor can be expressed as 

 )()( 21211 qddq iiiictm  , (2) 

where the indices 1 and 2 refers to the stator and rotor, respectively, the indices 
d and q refers to the currents components in a d-q adequate reference frame and 
c1 is a motor constant. The problem can be solved for this general case, but the 
solution is more complicated. Therefore, one will refer directly to a rotor flux 
oriented control, when the torque can be written as 

 )()()( 12 titctm qd , (3) 

where: 2 ( )d t is the direct component of the rotor flux (the quadratic 
component is zero) and c – a constant. 

The initial and final speed  

 ω(0) = 0 and ω(T)= ωf , (4) 

are imposed and it results from (1): 

 )()( rf mm
J
TT  , (5) 

where 
0

1 ( )d
T

m m t t
T

   and 
0

1 ( )d
T

r rm m t t
T

   denote the mean values on 

the optimization interval [0,T] for the electromagnetic torque and for load 
torque, respectively. 

The equation for the direct rotor flux component is 

 )()(1)( 1222 ti
T
Lt

T
tf d

r

m
d

r
d   , (6) 

where Tr= Lr/r2 is the rotor time constant, Lr and Lm are the rotor and mutual 
inductances and r2 is the rotor resistance. 

The control variables for the drive system are i1d  and i1q. The state 
variables are the speed ω(t), the flux Ψ2d and the rotor current components. The 
last ones can be expressed as functions of other variables, so that one can 
consider only the first two mentioned state variables. The differential equations 
for the state variables are (1), (3) and (6). 

The performance index of the optimal energy control corresponds to 

 1
2

0

( )d
T

I p t t  , (7) 

with  
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 )()()()()( 2
22

2
22

2
11

2
11 tirtirtirtirtp qdqd  . (8) 

Problem P1: find the control variables i1d  and i1q which transfer the 
system  described by (1) and (6) from the initial to final conditions (4), so that 
the performance index (7) to be minimized. 

In every control problem, the command variables have to be chosen so 
that the motor torque ensures the reaching of the final conditions (5): 

 2 1
0

( ) ( )d
T

rf
d q

J mt i t t
cT c


   . (9) 

In the optimal control case, there is only one variant that ensures the 
minimum of (7). The optimal control can be obtained only if data referring to 
the system are known, namely the mean value rm of the load torque is 
beforehand known (at least the shape of variation on [0, T] must be known and 
the magnitude of the torque has to be estimated at the beginning of the optimal 
process). This condition can be satisfied in many applications. 

The formulated problem imposes to minimize a functional (the energy 
losses (7)) and to ensure an imposed value for another functional (the torque 
(9)). Therefore, the P1 optimal control problem is an isoperimetric one. In such 
problems (Anderson & Moore, 2007), it is possible to change the role of the 
functional and to formulate the 

Problem P2: find the control variables i1d  and i1q which maximizes the 
torque (9) if the energy losses (7) has an imposed value on the interval [0,T]. 

The Hamiltonian for the first problem is 

 1
1 2 1 2 22

1( ) ( ) ( ) ( ) ( ) ( )d q r
cH p t t t i t m t f t
J J

        
, (10) 

with f2(t) and p(t) given by (6) and (8) and λ1 and λ2 are the co-state variables. 
For the second problem, the Hamiltonian is 

 
1

' ' '
2 1 2 2( ) ( ) ( ) ( ) ( ) ( )d qH t i t t p t t f t     , (10’) 

Both variants have the similar main terms and this fact leads to similar 
solutions in this cases. Of course, supplementary differences can appear because 
of the terminal conditions. The formulated problems can be solved in similar 
manner. In the sequel, only the P1 problem will be considered. 

 
3. Main Results 

 
The problem is solved based on Hamiltonian equations: 
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 0
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di
H  (11) 

 0
1





qi
H  (12) 

 







H

1
  (13) 

 
d

H
2

2 





    (14) 

where H(.) is given by (10). 
The system equations (1) and (6) are attached to the above equations. 
It results from (10) and (13) 1d / d 0t  and thus λ1(t) = constant. 
If the general expression (2) of the motor torque is used, the obtained 

solution has a complicated form. A simpler form (3) is preferably, especially 
because it refers to a modern and very used control technique. A supplementary 
significant simplification is obtained if the electromagnetic transient process is 
neglected, taking into account that this process has a fast decrease and affects in 
a small extent the electromechanical evolution. This case will be firstly 
analyzed in the sequel and then will be considered the ensemble of the transient 
evolution. 

3.1. The Constant Variables Case 

If the variation of the flux is neglected, i2d = 0 and since  

 q
r

m
q i

L
Li 12   (15) 

the necessary conditions of optimality  (11) and (12) lead to 

 01111  q
m

d i
J

cLir  , (16) 

 0111  d
m

qe i
J

cLir  , (17) 
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with  

 2

2

21
r

m
e L

Lrrr  . (18) 

It results from (16) and (17): 

 2
11

2
1 dqe irir  ,  (19) 

  e
m

rr
cL

J
11  . (20) 

The last equations indicate that constant values for i1d and i1q can be 
solution for the problem. The performance index (7) can be written in this case: 

 )(
2

2
1

2
11 qed irirTI  .  (21) 

The transfer time T results from (5) 

 
r

f

mm
J

T





,  (22) 

with m = m = const. Replacing (22) in (21), one obtains 

 2
1qe

r

f ir
mm
J

I





 (23) 

The condition of optimality becomes 

 0
1





qi
I   or   0)(2 11  dqmr iicLmm  (24) 

0)(2 12  qdr icmm  

and therefore 

 rmm 2*   (25) 

The obtained result indicates that the minimum of cooper losses is 
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achieved if the electromagnetic torque is double of the mean value of the load 
torque. This result was also indicated by authors (Boţan et al., 2007) for 
different motor types in the same conditions of neglecting of the flux variation. 
It should also be noticed the equality (19) of the losses produced by the d and q 
components of the stator currents, the first one including the influence of the 
rotor losses. 

The optimal control variables can be obtained from (19) and (25): 

 
1

2
1

2
r
r

cL
mi e

m
d

r ,           
em

q r
r

cL
mi r 12

1
2

 .  (26) 

In this period, the rotor flux is given by the constant value 

 dmd iL 12   (27)  

The relations (22) and (25) show that the transfer time T increases very 
much when the load torque is small. In such cases it is possible to be necessary 
to introduce a limitation for T. Also, (19) indicates that i1d is bigger than i1q and 
then the flux can overcome its nominal value. Therefore, in certain applications 
it will be necessary to introduce a limitation of the reactive stator component. 
The limitations mentioned here are not considered in the paper.  

3.2. The Complete Transient Process 

Although the transient electromagnetic and electromechanical processes 
are held together, it is possible to separate these processes, in order to simplify the 
obtaining of the solution. In this respect, one will consider in the following that 
the electromagnetic process is ended at the moment T1 and the flux and currents 
remain unchanged after this moment. This moment was chosen T1= 4Tr. By 
comparison with the previous case, the final value of the speed ωf is obtained at 
the moment T ' > T, because the mean value of the motor torque is smaller on the 
initial interval [0, T1]. 

If one denotes with 1m , 2m = m2=const. and 1rm  2rm  the mean values 
of  the  electromagnetic  and  of  the  load  torque  on  the  intervals [0, T1]  and 
[T1, T’], respectively, the final speed can be expressed as 

 
1

'

1 2 2

1 1
1 1 2 2

1( ') ( ) ( ) ( ) d

'( ) ( ) .

T

f r
T

r r

T T m t m t t
J

T T Tm m m m
J J

      


   


                (28) 

In order to simplify the notations, one will consider a constant load 
torque. Comparing (5) and (28), it results 
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22

12
1'

rmm
mmTTT




 .                               

Remark 1: The moving begins only if m(t) > mr; since Ψ2d(0) = 0, the 
moving will start at a moment tp. If 1m is interpreted as the mean value on the 
interval [tp, T1], the previous reasoning remain valid and the above formula 
becomes 

 
r

r
p

r mm
mmt

mm
mmTTT









2

1

2

12
1' .  (29) 

 If the two processes are separated, the performance index (7) can be 
computed as 

 
1

1

'

1 2 1 0
0

( )d ( )d
T T

T

I I I p t t p t t     , (30) 

where pv(t) and p0(t) are the power losses on the respective intervals. On the 
second interval, all variables are constant, having the values indicated in the 
section 3.1 and will be denoted with i1d0, i1q0, Ψ2d0 and 

 2
0112 )'( qeirTTI  . (31) 

Since the speed does not influence the flux and the co-state variable λ1 
is constant (having the same value (20)), only the equations (6) and (14) remain 
from optimality conditions. The last one leads to 

 
d

dd

r
q

ir
T

tti
J
ct

2

2
2
2

22112
)(1)()()(








  . (32) 

In order to obtain a simpler form of relations, the above equation was 
established neglecting the influence of the current component i2d. 

From the necessary conditions (11) and (12), one obtains: 

 )()( 211 t
Jr
cti d

e
q  , (33) 

 )(1)( 2
1

1 t
rT

Lti
r

m
d  . (34) 
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 Introducing these values in (6) and (32), and using (20), it results: 

 )()(1)( 222 tat
T

t d
r

d   , (35) 

 2 2 2
1( ) ( ) ( )d
r

t b t t
T

    , (36) 

with 
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22
1

1
1

2

2

11,1,
rL

L
T

b
L
r

LT
b

rT
La

r

m

rmrrr

m . (37) 

If one extracts λ2(t) from (35), computes the derivative of this function 
and introduces these expressions in (36), it results a second order differential 
equation for Ψ2d(t). Of course it is possible to obtain an analytical solution to 
this equation but the coefficients and the exponents have a complicated form, 
which does not allow a simple analysis of the results. Therefore one prefers to 
simplify the problem, considering a first order equation in the form 

  0222 )(1)( dd
r

d t
T

t   . (38) 

The final value  Ψ2d(T1) = Ψ2d0 corresponds to the value of the second 
interval of the optimization (Section 3.1). It results the solution  

 /
2 2 0( ) (1 e )rt T

d dt   . (39) 

The current i1q is obtained from (33): 

 /
1 1 0( ) (1 e )rt T

q qi t i  . (40) 

The imposed final condition for Ψ2d can be achieved if the current i1d 
has a variation which is in concordance with the equation (6). It results 

 
m

d
dd L

iti 02
011 )( 
  (41) 

This value has to be commuted to i1d0 at the moment T1. 
The evolution of the variables is indicated in Fig.1. The idealized 

variation of the speed, described in the Section 3.1 is indicated with ω, having a 
linear increase up to ωf. The optimal variation of the speed is denoted with ω’ 
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and it is zero up to tp, then it has a small acceleration and has the same 
acceleration as ω after T1. The current i1q and the flux Ψ2d have similar 
variations and can be represented by the same curve with appropriate scale. 

 
Fig. 1 – Optimal system behaviour. 

  
 

3.3. Comparison Between Certain Control Variants 
 

In the sequel, one will present and analyze three control variants on the 
interval [0, T1]. 

Variant (a):  the optimal control established in the Section 3.2. 
The flux and currents variations are indicated in (39), (40), (41). The 

moment tp when the moving begins is given by the condition 

 rpqpd mtitc )()( 12  (42) 

It results from (39) and (40) 

 / 2
2 0 1 0(1 e ) .rt T

d q rc i m   (43) 

Taking into account that  

 0102
*

qd icm   (44) 

and optimal torque m* satisfies (25), one obtains 

 / 2(1 e ) 1 / 2rt T  , (45) 

where β = tp/T1. Finally, it results  β = 0.19. 
Having in view the same formulas (39) and (40), the mean value of the 

torque on the interval [tp,T1] is 

T1 T T' 
t 

ωf 

i1d0 

i1q0 

ω 

ω' 
i1d 

i1q 

(ψ2d) 

tp 
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 1 / 2
1 2 0 1 0

1

1 (1 e ) dr

p

T t T
d qt

p

m c i t
T t

  
   (46) 

and one obtains 

 *
1 0.72m m  (47) 

 In this conditions, the final moment resulted from (29) is 

 '
10.82T T T   (48) 

Variant (b): the control currents are constant, with the values i1d0,i1q0 
established in the Section 3.1; the flux is imposed by the current i1d0 as in (6) 
and it is 

 /
2 2 0( ) (1 e )rt T

d dt    . (49) 

with   

2 0 1 0d m dL i  .                    (50) 

The developed torque is 

 / /*
1 2 1 0 2 0 1 0( ) ( ) (1 e ) (1 e )r rt T t T

d q d qm t c t i c i m         (51) 

In  this conditions,  the moving  begins  at  the  moment  tp = βT1,  with 
β = 0.175. The mean value of the torque on the interval [tp,T1] is 

 1 *
1 1

1

1 ( )d 0.85
p

T

t
p

m m t t m
T t

 
   (52) 

 The final moment given by (29) results 

 '
10.425T T T   (53) 

Variant (c): it is similar with the variant (a), but the component i1d is 
beforehand established, so that the motor starts with an established flux Ψ2d0 and 
only the current i1q(t) varies on the interval [0,T1]. The variations are similar 
with variant (b), but the total energy losses depend on time of the establishing of 
the current i1d.  

In the sequel, only references to the first two variants will be made. 
 
Energy losses 
The cooper energy losses are in directly concordance with the 

performance index, which can be computed with (30). The second component is 
given by (31), with the remark that the value of the final moment T’ depends on 
the adopted control variant. The first component of the index has four terms, 
depending on the rotor and stator current components, as it results from (8). The 
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last term can be directly associated with the first one, depending on i1q(t), as it 
results from (15). The dependence on the current i2d(t) can be expressed as 
function on i1d(t) and Ψ2d(t): 

 2 2 1
1( ) ( ) ( )m

d d d
r r

Li t t i t
L L
  . (54) 

The variations in the optimal control (variant (a) discussed above) of the 
flux and of the stator current components are indicated in (39), (40), (41), with 
the relation between the final values given by (20) and (50). The flux variation 
is imposed by the fixed i1d0, having the form (49). A similar form has i1q(t) if 
one does not impose a constant value, or an optimal variation. Finally, the index 
I2 can be expressed in terms of i1d0 and i1q0. For a simpler comparison between 
the variants, the final value can be expressed only in dependence of one current 
component, using (20). 

Variant (a): taking into account the above mentioned aspects, the index 
I1 is: 

 
1 2/ /2 2 2 22

1 1 0 1 1 0 2 0 1 02
0

1 (1 e ) (1 e ) d
2

r r
T

t T t T
a e q d d m d

r

rI r i r i L i t
L

  
        

  . (55) 

Performing the computing, one obtains finally: 

 2
1 1 0

1

(0.85 0.45 ) ,e
a e q r

rI w w r i T
r

   . (56) 

Variant (b): in this case, 

 
1 2/2 2 2

1 1 0 1 1 0 2 0 1 02
0

1 (1 e ) d
2

r

T
t T

b e q d d d
m

rI r i r i i t
L

 
       

  . (57) 

The computing leads to 

 2 2
1 1 0 1 1 0 1

1

1.48 1e
b e q e q

rI r i T r i T
r

 
   

 
. (58) 

For usual values of the parameters, one can approximate re/r1   2 and 
thus 

 2
1 1 1 01.75 ; 3.96 ; .a b e q rI w I w w r i T    (59) 

The index I2 on the final interval [T1, T '] is (31) and is computed for the 
final time T’ given by (48) or (53) for the two variants. It results: 

 2 1 2 1( 0.18 ) / ; ( 0.575 ) / .a r b rI w T T T I w T T T     (60) 

The total value of the performance index is I = I1 + I2.  
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If, for instance, T = 5T1 = 20Tr, Ia = 21.43 w and Ib = 22.78 w and the 
relative increasing is δ = (Ib – Ia)/Ia = 0.063. If  T = 15T1 = 60Tr, Ia = 61.03 w 
and Ib = 62.79 w and the relative increasing is δ = (Ib – Ia)/Ia = 0.029. 

Remark 2: in order to simplify the implementation and to reduce the 
duration of the process, the optimal control can be modified on the initial 
interval of the electromagnetic transient process. This modification can be 
obtained, for instance, maintaining constant the two control currents. This  
variant was presented with more details and, in comparison with optimal 
control, it is noted that: 

– the energy losses increase, but not very much (between 2% and 7%); 
– the total time of the transfer decrease about similar percentages. 
These results were expected, because the duration of the 

electromagnetic process is significantly smaller as of the whole one, but in 
certain applications, it is important to know what the modifications are if a 
simpler implementation is adopted. 

 
4. Simulation Results 

 
Certain simulation tests were performed in connection with the studied 

problem for a induction motor with the data: the rated values – 1.5 kW, 230 V, 
3.8 A,  10 Nm,  50 Hz;  parameters – Ls = 0.28 H,  Lm = 0.265 H,   Lr = 0.28 H, 
Rs = 3.4 Ω, Rr = 3.2 Ω.   Some results are indicated in the figures presented 
below. Fig.2 presents the variation of the speed for different electromagnetic 
torque, comparing with the load torque. The variation of the optimal torque for 
a 5 Nm load torque is presented in Fig. 3. In the same case, the variations of the 
speed and of the stator and rotor losses are indicated in Figs. 4 and 5. 

 

 
Fig. 2 − Behaviour of the drive system with induction   

motor for optimal and non-optimal control. 
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Fig. 3 − Variation of the optimal torque.  

 
 

 
Fig. 4 – Variation of the speed. 

 

 
Fig. 5 – Variations of the stator (red colour) and rotor losses. 
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5. Conclusions 

 
A minimum losses problem for an electrical drive system with a current 

controlled induction motor is presented. A connection with the maximum torque 
control is indicated. A rotor flux oriented structure is considered. The study is 
performed with the assumption of neglecting of the transient process of the flux 
and also in the case when this process is considered.  

A comparison of different variants indicates that a simplified control 
algorithm, with constant current control variables leads to a behaviour which 
does not differ too much by the exact optimal control. Simulation results are 
presented. 
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CONTROLUL OPTIMAL AL UNUI SISTEM DE ACŢIONARE ELECTRICĂ CU 
MOTOR DE INDUCŢIE CONTROLAT ÎN CURENT 

 
(Rezumat) 

 
Lucrarea se referă la o problemă optimă de control din punct de vedere 

energetic al regimului tranzitoriu pentru un sistem electric de acţionare cu motor de 
inducţie. Este prezentată o conexiune între problema energiei minime şi cuplul maxim. 
O soluţie detaliată pentru un sistem controlat în curent este descrisă pentru controlul 
energiei minime. Sunt prezentate rezultatele simulărilor. 

 


