
BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI 
Publicat de 

Universitatea Tehnică „Gheorghe Asachi” din Iaşi 
Volumul 64 (68), Numărul 4, 2018 

Secţia 
ELECTROTEHNICĂ. ENERGETICĂ. ELECTRONICĂ 

 
 
 
 
 

 
 
 
 
 
 
 
 

REDUCED COMPLEXITY SOFT DETECTION FOR DOUBLY 
ITERATIVE RECEIVER USING 64 – QAM 

 
BY 
 

LUCIAN TRIFINA, ANA MIRELA ROTOPĂNESCU* and 
DANIELA TĂRNICERIU 

 
Technical University “Gheorghe Asachi” of Iaşi 

Faculty of Electronics, Telecommunications and Information Technology 
 

Received: October 31, 2018 
Accepted for publication: December 21, 2018                    
                                                                                                                                                                                   

Abstract. The spectral efficiency for a communication system can be 
increased using a flexible modulation and coding diagram such as bit interleaved 
coded modulation combined with a high order modulation diagram like 
Quadrature Amplitude Modulation (QAM). In this paper, we propose two 
methods to reduce the complexity of the soft detection for a doubly iterative 
decoder using space-time turbo codes and a large number of transmit and receive 
antennas for 64–QAM modulation. The reduced complexity calculation methods 
for the log-likelihood ratio (LLR) for the current demodulated symbol consist in 
considering a certain number of symbols belonging to the first three outlines 
around the respective symbol, instead of all 64. In the first method, some 
additional points are required when no information exists for a bit from the six 
ones corresponding to a certain symbol. In the second method, the additional 
points are avoided, but instead a fixed distance is used in the numerator of the 
denominator of LLR value. The average detection time is reduced by about 48% 
compared to the original diagram, while the total time required for the receiver 
diagram decreases with about 7% up to 18%, depending on the SNR values and 
on the number of outer iterations. 

 

Keywords: space-time turbo codes; doubly iterative decoder; soft 
estimates. 
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1. Introduction 

 
Space – time turbo codes with iterative decoding (Foschini & Gans, 

1998) have become an area of great interest in the last two decades. It has been 
demonstrated that the use of an iterative demodulation – decoding approach can 
lead to a  performance of 2 to 3 dB from the channel outage probability for 
quasistatic fading channels and perfect channel state information available at the 
receiver. In (Biglieri et al., 2005), Biglieri presented a block diagram for a 
doubly iterative receiver based on the minimum mean square error (MMSE) 
criterion (Biglieri et al., 2003). A new diagram has been presented with a 
significantly reduced complexity for a large number of transmit and receive 
antennas, compared to the previous diagram proposed by Stefanov and Duman 
(Stefanov & Duman, 2001). Since the large number of antennas increases the 
receiver complexity, a spatial interference canceling diagram is used, ensuring a 
good compromise between complexity and performance.  

The high order modulation diagrams have the advantage of larger data 
rates and better spectral efficiencies for radio communications systems. The 
disadvantage is that the performance of the iterative receivers depends critically 
on the size of the signal constellation and a high order modulation diagram is 
less robust to noise and interference, leading to performance degradation.  

In this paper addresses the detection block from the doubly iterative 
receiver and we propose two reduced complexity methods for the calculation of 
the log-likelihood ratio (LLR) values for coded bits. 

The paper is structured as follows: in Section 2 we recall the system 
model consisting of the transmitter and the receiver block diagram. In Section 3 
we present the proposed reduced complexity detection methods and in Section 4 
the simulation results are presented. Section 5 concludes the paper. 
 

2. System Model 
 
We consider the same mobile communication system as in Rotopănescu 

et al., (2012), or Rotopănescu et al., (2016), with NT transmit antennas and NR 
receive antennas. The information bits are turbo-coded with coding rate Rc and 
block size of NTN modulated symbols, where N is the number of successive 
transmissions from the transmit antennas, corresponding to a codeword.  

The signal at the modulator output is denotes by the symbol xi,t 
transmitted by antenna i, 1 ≤ i ≤ NT, at each time instant t, 1 ≤ i ≤ N. The 

modulation function is       1 1, ,, ...,
T

T

t t t t N tf fx =f c c   c  and it transforms the 

MNT components of the column vector of the coded symbols from the turbo 
decoder output, at time t, 1, ,( , ..., )

T

T
t t M N tc c c    into the column vector 

1, ,( , ..., )
T

T
t t N tx x x   , where M is the number of bits transmitted per modulated 
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symbol.  if  , 1 Ti N  , is the mapping function for the modulator 

corresponding to the i-th transmit antenna, and  , ,1 1,( , ..., )T
i t i M ti M tc c   c   , 

1 Ti N  , 1 t N  , is the vector with the coded bits that will be mapped in the 
modulated symbol and this symbol will be transmitted by antenna i at time t. In 
this paper we consider that all transmit antennas have the same modulation 
function, namely 64-QAM modulation. 

The spectral efficiency refers to the  information rate  that can be 
transmitted over a given bandwidth in a specific communication system. The 
spectral efficiency is denoted by   and is equal to RcMNT where Rc is the 
coding rate of the turbo code. We denote by F the number of independent 
fading states of equal lengths, given by a single space time codeword matrix of 
length NTN (it is assumed that F divides N).  

One codeword of the turbo-code contains F = NTN/L distinct blocks 
with constant fading, where L is the number of symbols for which the fading 
remains the same and can take any value that may divide NTN. In our 
simulations F is equal to one. The path gains αi,j are modeled by complex 
independent Gaussian random variables with zero mean and variance 0.5, for 
each dimension.  

The path gains are constant for L symbols corresponding to ηL 
information bits and they are independent for each L-symbols block. αi,j is the 
path gain from the transmit antenna i  to the receive antenna j, 1 Rj N  . zi,j is 
the noise sample for receive antenna j at time t and it is modeled as a complex 
Gaussian random variable with zero mean and independent real and imaginary 
parts with variance N0/2. N0 is the noise power spectral density. yt,jis the signal 
received by antenna j at time t and it consists in the transmitted signals 
corrupted by Rayleigh fading and Gaussian noise, as follows: 

, , , ,
1

TN

t j i j t i t j
i

y x z


  .                        (1) 

Using a high order QAM constellation more bits per symbol can be 
transmitted. If the average energy of the constellation remains the same, the 
symbols must be closer to each other and thus they are more susceptible to be 
corrupted by noise.   

This brings a higher bit error rate and thus higher-order QAM can 
deliver more data less reliably than lower-order QAM, for constant mean 
constellation energy. Using higher-order QAM without increasing the bit error 
rate requires a higher signal-to-noise ratio (SNR) either by increasing signal 
energy, or by reducing the noise, or both. 

The QAM constellation symbols are normally arranged in a square grid 
with equal vertical and horizontal spacing, so that the most common used QAM 
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constellation have a number of symbols equal to a power of 4, such as 4 – 
QAM, 16 – QAM, 64 – QAM, 256 – QAM, and so on. In general, the number 
of symbols of the QAM modulation is 4m = 22m, where the number of the bits in 
each constellation symbol is M = 2m (m is an integer). The symbols are 
represented in a complex plane having the in-phase component on the real axis 
and the quadrature component on the imaginary axis.  

The transmitter block diagram is presented in Fig. 1. It performs a 
coded modulation with bit interleaving and antenna diversity, as described in 
(Caire et al., 1998).  

The receiver block diagram in (Biglieri et al., 2005; Trifina et al., 2011) 
uses MMSE iterative algorithm and a linear MMSE interface (Biglieri et al., 
2003) and it is shown in Fig. 2.  

The turbo decoding algorithm is the Max-Log-APP (Benedetto et al., 
1997; Vogt & Finger, 2000). We note that turbo decoding algorithm is an 
iterative algorithm and the receiver diagram is also an iterative one. Therefore, 
we mean by inner iteration the iteration in the turbo decoder and by outer 
iteration the iteration in the global receiver diagram shown in Fig. 2. 

 

 
 

Fig. 1 – Transmitter block diagram. 
 
 

 
 

Fig. 2 – Receiver block diagram. 
 
 

3. Reduced Complexity Detection 
 
The linear MMSE interface used by the receiver, consists in a linear 

filter modeled by a matrix that minimizes the mean square error as described in 
(Biglieri et al., 2003). The filtered signal is transmitted to the interference 
canceling block.  

The output of this block is generated according to the algorithm 
described in (Biglieri et al., 2005). The suboptimal simplified log-likelihood 
ratios of the coded bits , , 1 , 1q t Tc q MN t N     , are given by : 
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where: 11 qi
M
     

, 
 
,

k

i ty , and matrix  kK  are described in (Biglieri et al., 

2005) and k is the number of outer iterations. Fig. 3 presents the signal 
constellation for 64-QAM modulation using the Gray coded bit-mapping. 

 

 
 

Fig. 3 – Gray coded bit mapping for 64-QAM signal constellation. 
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From formula (8) in (Biglieri et al., 2005) we can write:  

    
, ,,

k k
i t i ti ty x q  , 1 , 1Ti N t N    ,           (3) 

where ,i tx  is the symbol transmitted by antenna i at time t and  
,
k

i tq  is the noise 

and the residual spatial interference at outer iteration k. Variable  
,
k

i tq  is assumed 
to be modeled as a complex Gaussian random variable and thus can be noticed 
that when a symbol is transmitted, the symbols around this symbol are more 
likely to be received. 

As described in (Rotopanescu et al., 2016), the average energy for this 
constellation is  

E64 – QAM = 42.                                                (4) 

The global turbo coding rate is 1/2 and the spectral efficiency for 64-
QAM modulation, in the case of 16 transmit antennas is 48 bits/s/Hz. 

In formula (2) above, the sums from the numerator and denominator are 
performed for all the 64 QAM symbols, each of them consisting of 6 bits. In 
order to reduce the detection complexity and to reduce the detection time of the 
received symbols, in this paper we propose a reduced complexity calculation 
method for the log-likelihood ratios of the coded bits. Specifically, in (2), only a 
reduced number of QAM symbols is used, instead of all 64. 

Further, by outline we define all the symbols belonging to a square that 
has in its center a certain symbol, or a part of a square, if that certain symbol is 
close to the edge of the constellation. In order to simplify the detection method 

we first demodulate the current received symbol 
 
,

k

i ty , and then in the sums 
from (2) we consider only the symbols belonging to the first 3 outlines around 
the demodulated symbol. The choose of the first 3 outlines was determined by 
simulation as being the minimum number of outlines for which there is no 
performance degradation in decoding. We note that there are demodulated 
symbols for which no symbol among its outlines contains the bit value 0 or 1 at 
a certain position from the six possible ones, so that there is no information for 
the bit on that position. Thus, there is no value corresponding to the sums from 
the numerator or denominator in (2). In order to remove this possibility, two 
methods are proposed. 

In the Method 1, a number of additional symbols is required in the cases 
mentioned above. 

For example, for symbol 5 (000101), marked with a circle in Fig. 4 a, 
all the symbols of the 3 outlines are 0, 4, 12, 1, 13, 3, 7, 15 marked with a 
square, 48, 32, 36, 44, 40, 16, 8, 17, 9, 19, 11, 18, 2, 6, 14, 10 marked with a 
triangle, and 53, 49, 33, 37, 45, 41, 52, 20, 21, 23 marked with star, as seen in 
Fig. 4 a. For symbol 10 (001010), marked with a circle in Figure 4.b, the 
symbols from the three outlines are 15, 11, 14 marked with a square, 5, 13, 9, 7, 
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6 marked with a triangle, 0, 4, 12, 8, 1, 3, 2 marked with a star, as presented in 
Fig. 4 b. Because all the 16 symbols from the three outlines for symbol 10, 
including 10, have the first two bits equal to 0, some additional points are 
required. The additional point 40, marked with hexagon in Fig. 4 b, has the first 
bit equal to 1 and the additional point 18, marked with pentagon in Fig. 4 b, has 
the second bit equal to 1.  

As another example, for the constellation symbol 42, marked with a 
circle in Figure 4.c, the total number of selected symbols from the first three 
outlines is 16 (including symbol 42). These symbols are 46, 47, 43 marked with 
a square, 38, 39, 37, 45, 41 marked with a triangle, 34, 35, 33, 32, 36, 44, 40 
marked with a star. The additional symbol 8, marked with a hexagon, is 
required because this symbol has the first bit equal to 0, while all the previous 
16 symbols have the first bit equal to 1. The additional symbol 50, marked with 
pentagon, is required because this symbol has the second bit equal to 1, while 
all the previous 16 symbols have the second symbol equal to 0. The total 
number of symbols for which the bit values 0 and 1 for the six bits appear in all 
the 18 symbols for symbol 42 are given in Table 1.  

We count the total number of considered symbols in Method 1 for 
which the bit with number l, l = 1, 2, ..., 6, is equal to 0 or to 1, in the case of all 
64 symbols of the 64-QAM constellation. The sums of these numbers are given 
in columns 2 and 6 in Table 2. In the method from (Biglieri et al., 2005) all the 
64 symbols are considered, resulting in 32 symbols for each of the six bits 0 or 
1. Thus for all 64 symbols the total number of considered symbols for each of 
the six bits is 32 64 2048  . In the columns 4 and 8 in Table 2 we give the 
percentages of the number of symbols considered in the proposed Method 1 
compared to that in (Biglieri et al., 2005). Globally, for all the six bits in each of 
the 64 symbols the results are given in the last row in Table 2, in the 
corresponding columns. 

Considering all symbols to be used equally likely, it results that bits 0 
and 1 are also equally likely for each of the six positions. Thus, the global 
average complexity for computation of LLR in Method 1 results to be equal to 
48.05% from that of the method in (Biglieri et al., 2005). 

In Method 2, as an alternative for the additional points, instead of the 

value    2

,

k
i ty x in the denominator or the numerator of LLR expression from 

(2), we use the squared distance from the point corresponding to the 
demodulated symbol to the respective additional point. Because in all cases the 
additional points are in the fourth outline of the demodulated symbol, this 
distance is equal to the distance between two successive points on one axis in 
the M-QAM constellation, multiplied by four. If the distance between two 
successive points on an axis in the M-QAM constellation is weighted so that for 

NT transmit antennas the average energy is equal to one, then value    2

,

k
i ty x  is 
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approximated by the quantity 
2

QAMQAM

2 644
M TM T E NE N 

 
  
   

. M QAME   is 

the average energy of the M-QAM constellation when the distance between two 
successive points on an axis is equal to two. Thus, for 64-QAM and 16 transmit 

antennas, as considered in this paper, value    2

,

k
i ty x  is approximated by the 

quantity 4 42 0.09524 . 
  

 
 

Fig. 4 a – Outlines for symbol 5 (000101). 
 
 

We note that in Method 2, we have to test if for a demodulated symbol 
we have no information for the bit 0 or 1 in one of the six positions. For 
example, if we initialize the value of denominator or numerator from (2) with 
zero, when we compute LLR for a bit, we have to test if this value is zero or 
not. This test is not required in Method 1. 
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The sums of the numbers of symbols from outlines without additional 
points, for which the bit with number l, l = 1, 2, ..., 6, is equal to 0 or to 1 are 
given in columns 3 and 7 in Table 2. In the columns 5 and 9 in Table 2 we give 
the percentages of the number of symbols considered in Method 1 compared to 
that in (Biglieri et al., 2005). Globally, for all the six bits in each of the 64 
symbols the results are given in the last row in Table 2, in the corresponding 
columns. 

The global average complexity for computation of LLR in the proposed 
Method 2 results to be equal to 47.27% from that of the method in (Biglieri et 
al., 2005). However, we note that for this method an additional test is required 
and, thus, the complexities for the two methods are comparable. 

 

 
 

Fig. 4 b – Outlines for symbol 10 (001010). 
 

In the following, for a number of received sequences corresponding to 
the same number of information blocks at transmitter, by detection time we 
mean the time in which Log-Likelihood Computation block in Fig. 2 computes 
LLR values for the coded bits and by total time we mean the time in which the 
entire receiver shown in Fig. 2 processes all the received sequences. 
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Fig. 4 c – Outlines for symbol 42 (101010). 

 
We denote by DTorig and RTorig the detection time and the total 

processing time at receiver, respectively, for the original diagram from (Biglieri 
et al., 2005). Similarly, we denote by DTi and RTi,  1,2i , the detection time 
and the total time at receiver, respectively, for the reduced complexity diagram 
using method number i proposed in this paper. Let αi = DTi/ DTorig be the 
percentage of the required detection time in the proposed diagram with method i 
compared to that in the original diagram and let β = DTorig/RTorig  be the 
percentage of the required detection time compared to the total time at receiver 
in the original diagram. Then for the proposed reduced complexity detection 
diagram with method i  the total time at receiver is equal to a percentage of  

     
1 1

1 1 1 1i orig i orig origi
i

orig orig orig

DT RT RT RTRT
RT RT RT

   
 

       
        ,    (5) 

compared with the total time at receiver in the original diagram. 
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4. Simulation Results 

 
In this paper the simulations were performed for 64-QAM (M = 6), 

considering the same scenario as in (Rotopanescu et al., 2012). The turbo 
encoder uses a random interleaver of length 2112 for 64-QAM modulation. The 
global rate of the turbo code is 1/2 (with alternative puncturing of the parity 
bits). The forward and feedback generator polynomials are (5, 7) in octal form, 
and the interleaver between the turbo encoder and the serial to parallel convertor 
is a random one. 

The number of transmit and receive antennas is 16. The space-time 
codeword is a matrix with 16 rows (the number of transmit antennas) and 44 
columns for 64-QAM modulation. The number of distinct blocks with constant 
fading, F, is equal to 1. The turbo decoder uses the Max-Log-APP algorithm, 
described in (Trifina et al., 2011), and performs maximum 10 iterations. 

To cancel spatial interference, k = 0, k = 1 and k = 4 outer iterations 
were used. In (Trifina et al., 2011), an analysis was performed to evaluate the 
influence of the extrinsic information scaling coefficient, denoted by s, on the 
BER/FER performance of the system with QPSK modulation. As in 
(Rotopanescu et al., 2012) and (Rotopanescu et al., 2016), we consider the same 
extrinsic information scaling coefficient that performs the best FER and BER 
performance. Therefore, for k = 0,  the  scaling  coefficient  is  s = 0.9, for k = 1, 
s = 0.8 and for k = 4, s = 0.75. The Monte Carlo simulation results are given in 
Figs. 5 and 6, for BER and FER performances, respectively, using k = 0, 1 and 
4. These figures show the performance of the MMSE doubly iterative receiver 
through BER/FER, versus signal-to-noise ratio per bit (Eb/N0). The simulations 
are made for the original diagram and for the proposed reduced complexity 
detection diagram using the methods described in Section 3. Fig. 5 and Fig. 6 
represent the BER/FER performances for the three diagrams. We can see that 
these performances are almost the same for all diagrams. 

From Fig. 6 we note that the coding gain increases proportionally with 
the number of outer iterations k, as we will analyze in what follows. Increasing 
the outer iteration number of the MMSE iterative decoder up to 4 leads to 
improved performance. In (Biglieri et al., 2005) it was shown that further 
increasing the number of outer iterations does not lead to additional 
performance improvement. 

From simulation results we also observe that for k = 4, the outer 
iterations introduce relatively more errors compared to k = 1, and the 
supplementary coding gain obtained for k = 4 is smaller than the one achieved 
when k = 1. 

Tables 3, 5 and 7 show the detection times and the receiver times, in 
seconds, for the original diagram from (Biglieri et al., 2005) and for the 
proposed diagram with Method 1, when 1000 information blocks are simulated, 
for k and s specified above.   
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Table 1  
The Total Number of Symbols Considered in Method 1for which the Bit 

Number l, l=1, 2, ..., 6, is Equal to 0 or 1, for Symbol 42 
 

Bit position (l) 
The total number of 

symbols for which the 
bit number l is equal to 

0 

The total number of 
symbols for which the 
bit number l is equal to 

1 
1 1 17 
2 17 1 
3 9 9 
4 10 8 
5 9 9 
6 10 8 

 
 

Table 2  
The Sums of the Total Number of Considered Symbols in the Proposed Method for 
which the Bit Number l, l=1, 2, ..., 6, is Equal to 0 or 1, for all 64 Symbols of the  

64-QAM  Constellation 

Bit 
position 

(l) 

The total number of 
symbols for which 
the bit number l is 

equal to 0 

Percentage of the 
number of symbols 
considered in the 
proposed methods  

The total number 
of symbols for 
which the bit 

number l is equal 
to 1 

Percentage of the 
number of symbols 
considered in the 
proposed methods  

Method 1 Method 2 Method 1 Method 2 Method 1 Method 2 Method 1 Method 2 
1 984 968 48.05% 47.27% 984 968 48.05% 47.27% 
2 984 968 48.05% 47.27% 984 968 48.05% 47.27% 
3 1168 1144 57.03% 55.86% 800 792 39.06% 38.67% 
4 992 968 48.44% 47.27% 976 968 47.66% 47.27% 
5 1168 1144 57.03% 55.86% 800 792 39.06% 38.67% 
6 992 968 48.44% 47.27% 976 968 47.66% 47.27% 

All six 
bits 6288 6160 51.17% 50.13% 5520 5456 44.92% 44.40% 

 
 

Table 3  
Detection times and receiver times in seconds for the original diagram from (Biglieri et 

al., 2005) and for the proposed diagram with Method 1, for k=0, s=0.9, when 1000 
information blocks are simulated 

SNR 
(dB) origDT  

origRT    
1DT  

1RT  
1  

1 origRT RT  
from  

simulation 
 11    

3 9.160 72.385 12.65% 4.154 67.542 45.35% 93.31% 93.08% 
5 9.387 50.872 18.45% 5.068 45.989 53.99% 90.40% 91.51% 
7 9.083 37.357 24.31% 4.871 32.518 53.63% 87.05% 88.73% 
9 8.926 31.276 28.54% 4.802 26.802 53.80% 85.70% 86.81% 
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Table 4  
Detection Times and Receiver Times in Seconds for the Original Diagram from 

(Biglieri et al., 2005) and for the Proposed Diagram with Method 2, for k = 0, s = 0.9, 
when 1,000 Information Blocks are Simulated 

SNR 
(dB) origDT  

origRT    
2DT  

2RT  
2  

2 origRT RT  
from  

simulation 
 21    

3 9.160 72.385 12.65% 4.686 67.670 51.16% 93.49% 93.82% 
5 9.387 50.872 18.45% 4.712 46.247 50.20% 90.91% 90.81% 
7 9.083 37.357 24.31% 4.268 32.812 46.99% 87.83% 87.11% 
9 8.926 31.276 28.54% 4.276 26.629 47.90% 85.14% 85.13% 

 

Table 5 
Detection Times and Receiver Times in Seconds for the Original Diagram from 

(Biglieri et al., 2005) and for the Proposed Diagram with Method 1, for k = 1, s = 0.8, 
when 1,000 Information Blocks are Simulated 

SNR 
(dB) origDT  

origRT    
1DT  

1RT  
1  

1 origRT RT  
from  

simulation 
 11    

3 18.296 129.165 14.16% 9.418 121.058 51.48% 93.72% 93.13% 
5 18.436 85.050 21.68% 9.428 77.514 51.14% 91.14% 89.41% 
7 18.569 65.801 28.22% 9.097 57.907 48.99% 88.00% 85.61% 
9 18.796 57.295 32.81% 9.904 49.132 52.69% 85.75% 84.48% 

 

Table 6 
Detection Times and Receiver Times in Seconds for the Original Diagram from 

(Biglieri et al., 2005) and for the Proposed Diagram with Method 2, for k = 1, s = 0.8, 
when 1,000 Information Blocks are Simulated 

SNR 
(dB) origDT  

origRT    
2DT  

2RT  
2  

2 origRT RT  
from  

simulation 
 21    

3 18.296 129.165 14.16% 8.978 120.497 51.48% 93.72% 93.13% 
5 18.436 85.050 21.68% 8.935 76.630 48.46% 90.10% 88.83% 
7 18.569 65.801 28.22% 9.352 56.837 50.36% 86.38% 85.99% 
9 18.796 57.295 32.81% 9.350 47.434 49.74% 82.79% 83.51% 

 

Table 7 
Detection Times and Receiver Times in Seconds for the Original Diagram from 

(Biglieri et al., 2005) and for the Proposed Diagram with Method 1, for k = 4, s = 0.75, 
when 1,000 Information Blocks are Simulated 

SNR 
(dB) origDT  

origRT    
1DT  

1RT  
1  

1 origRT RT  
from  

simulation 
 11    

3 46.708 285.052 16.39% 22.255 259.451 47.65% 91.02% 91.42% 
5 46.488 186.578 24.92% 22.974 162.407 49.42% 87.05% 87.40% 
7 46.936 153.978 30.48% 22.471 129.733 47.88% 84.25% 84.11% 
9 46.497 136.732 34.01% 22.596 112.921 48.60% 82.59% 82.52% 
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Table 8 
 Detection Times and Receiver Times in Seconds for the Original Diagram from 

(Biglieri et al., 2005) and for the Proposed Diagram with Method 2, for k = 4, s = 0.75, 
when 1,000 Information Blocks are Simulated 

SNR 
(dB) origDT  

origRT    
2DT  

2RT  
2  

2 origRT RT  
from  

simulation 
 21    

3 46.708 285.052 16.39% 22.647 261.306 48.49% 91.67% 91.56% 
5 46.488 186.578 24.92% 22.627 163.605 48.67% 87.69% 87.21% 
7 46.936 153.978 30.48% 21.859 130.231 46.57% 84.58% 83.71% 
9 46.497 136.732 34.01% 23.408 113.074 50.34% 82.70% 83.11% 

 
Similarly, Tables 4, 6 and 8 show the detection times and the receiver 

times for the original diagram from (Biglieri et al., 2005) and for the proposed 
diagram with Method 2. Percentages i ,  ,  1 i  ,  1,2i , defined at the 
end of Section 3, and percentage RT1/RTorig resulted from simulation are also 
given in these tables.  

We see that the receiver time for the proposed diagram with both 
methods, when outer iterations are performed, decreases with about 7% up to 
18% compared to the original diagram from (Biglieri et al., 2005). The 
complexity reducing is higher for high SNR and for a bigger number of outer 
iterations because in these cases the turbo decoder performs less iterations.  
 

 
Fig. 5 – BER performances for the original diagram from (Biglieri et al., 2005) and for 
the reduced complexity proposed diagram with both methods for 64-QAM modulation 

and for k = 0, k = 1, and k = 4 outer iterations. 
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Percentages αi resulted from simulation are close to the average values 
of 48.05% or 47.27% theoretically determined in Section 3. Percentage   
increases along with the number of outer iterations and along with the value of 
SNR because in both cases the number of iterations performed by the turbo 
decoder decreases, while the detection time remains the same. Finally, we see 
that the percentages of RT1/RTorig values resulted from simulation are close to 
 1 i  . 

 

 
Fig. 6 – FER performances for the original diagram from (Biglieri et al., 2005) and for 
the reduced complexity proposed diagram with both methods for 64-QAM modulation 

and for k = 0, k = 1, and k = 4 outer iterations. 
 
 

5. Conclusions 
 

In this paper we have presented two methods to reduce the complexity 
detection in a doubly iterative receiver for MIMO transmissions with a large 
number of antennas. The proposed methods reduce the time for the computation 
of LLR for the current coded bit compared to the original detection diagram 
from (Biglieri et al., 2005). For 64-QAM modulation, the simplified detection 
methods consist in considering a certain number of symbols belonging to the 
first three outlines around the demodulated symbol, instead of all 64 symbols as 
in (Biglieri et al., 2005).  

In Method 1 a number of additional points are added if all the outlines 
have no symbol containing the bit value 0 or 1 in one of the six possible bits for 
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a symbol, so that there is no information for the respective bit, and thus there is 
no value corresponding to the sums from the numerator or denominator of LLR 
in formula (2).  

In Method 2 the additional points are not required. Instead, the squared 
value of the distance from the received point to the additional point, in formula 
(2), is replaced by the corresponding distance from the demodulated symbol to 
the additional point. It was shown that for 64-QAM the detection time with the 
two proposed methods, averaged over all 64 symbols, is reduced by about 48% 
and 47.27%, respectively, compared to the original diagram from (Biglieri et 
al., 2005).  

The total time required for processing at receiver decreases with about 
7% up to 18%. The complexity reducing is higher for high SNR values and for 
a bigger number of outer iterations because in both cases turbo decoder 
performs less iterations, and thus the percentage of detection time from the 
receiver time is bigger.    
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DETECTOR SOFT DE COMPLEXITATE REDUSĂ PENTRU RECEPTOR DUBLU 
ITERATIV FOLOSIND 64-QAM 

 
(Rezumat) 

 
Eficienţa spectrala pentru sistemele de comunicaţii poate creşte folosind 

modulaţii flexibile şi scheme de codare cu ordin mare, cum ar fi 64-QAM (Modulatie de 
amplitudinte in cuadratura). În această lucrare au fost propuse două metode care reduc 
complexitatea detecţiei soft pentru un decodor dublu iterativ ce foloseşte coduri turbo 
spaţio-temporale şi un număr mare de antene de transmisie şi recepţie. Metodele de 
calcul  propuse pentru reducerea complexităţii a raportului de plauzibilitate constau în 
considerarea unui anumit număr de simboluri în loc de toate 64. În prima metoda sunt 
necesare câteva puncte adiţionale atunci când nu există informaţie pentru un bit din cei 
6 corespunzători unui simbol. În cea de-a doua metodă, punctele adiţionale nu mai sunt 
folosite, dar se utilizează o distanţă fixă în numărătorul şi numitorul raportului de 
plauzibilitate. Timpul de detecţie este redus cu aproximativ 48% fată de schema 
originală, în timp ce timpul total necesar pentru schema receptorului scade cu 7% până 
la 18%, depinzând de valoarea SNR-ului şi de numărul de iteraţii. 



 


