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Abstract. The paper presents a study of the quality factor, Q, for cylindrical 
resonators with metal walls. The dielectric losses and the Joule losses in the 
walls are taken into account in establishing the mathematical expressions for Q. 
A numerical simulation is conducted in order to investigate the influence of real 
lossy dielectrics, such as ice, dust and distilled water on the value of Q and the 
resonance frequency. 
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1. Introduction 
 

Waveguide resonators are passive microwave devices used for 
amplifying high frequency signals, for measurements of frequency and 
dielectric constants, or as microwave filters. Two geometries are currently used: 
the rectangular and the cylindrical resonator. 

The important factors that characterize the waveguide resonator are the 
quality factor, Q, and the power to field conversion efficiency (Annino, 2006). 
Since both these quantities, as well as the resonant frequency , depend on the 
resonator geometry and dimensions, an exact determination, based on analytical 
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solutions of the electromagnetic field problem, when possible, is of paramount 
importance, especially in the analysis of the Q factor stability to geometrical or 
material imperfections. 

The general theory of waveguide resonators is well documented and 
analytical expressions for the electromagnetic field components are established 
in TM and TE modes for resonant cavities with uniform, ideal dielectrics 
(Miner, 1996). 

Some papers (Mohammad-Taheri, 1990) establish and discuss the 
quality factor of cylindrical resonators with metal walls, loaded with a hollow or 
full dielectric. In this case the magnetic field components are expressed as a 
series of finite element basis functions (Lagrange polynomials) which enable 
the determination of an analytical solution. 

In (Savin et al., 2014) the quality factor of a tunable cylindrical 
resonator (with a mobile base), partially filled with a cylindrical dielectric, is 
studied experimentally using the mode matching technique and a microwave 
vector analyzer. Simulation results, based on the finite integration technique 
(FIT), which uses a discretization of the domain in order to solve Maxwell’s 
equations in integral form, are shown. 

This paper presents a theoretical study of the cylindrical resonator filled 
with an ideal or lossy dielectric. The established mathematical expressions 
enable the calculation of the quality factor and the investigation of the influence 
of dielectric parameters on its performance. 
 

2. Problem Formulation. Electric and Magnetic Field Solutions 
 

The schematic model of a cylindrical resonator with metal walls and 
homogeneous dielectric is presented in Fig. 1. 
 
 
 
 
 

 
 
 
 

Fig. 1 – Cylindrical resonator. 
 

Excluding from the start the hybrid modes (which are in fact a 
superposition of simple modes), the cavity can be excited in TM or TE mode. 

Considering first the case of the TM mode, the electric and magnetic 
field components in the cylindrical coordinate system have the expressions 
(Miner, 1996): 
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The resonance frequency, ωr, has the expression: 
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In relations (1)…(5) Jn(kr) is the n-th order Bessel function and pnl is its 
l-th root, Jn(pnl) = 0. The phase constant β is: 

q
c
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so that the mode is called TMnlq. The lowest frequency modes that can be 
obtained are TM010, TM011 and TM110. 

In the case of the TE mode the electric and magnetic field components 
have the expressions (Miner, 1996): 
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In relations (8),…(12) '
nlp  is the l-th order zero of the derivative of 

Jn(kr), i.e. '
nJ ( '

nlp ) = 0. The resonance frequency has the same expression as in 

the TM mode, with the difference that pnl is substituted by '
nlp . The modes are 

called TEnlq and the lowest frequency that can be excited is TE011. 
 

3. Quality Factor of the Cylindrical Resonator  
 

The quality factor of a waveguide resonator is defined as 

maxr WQ
P


 ,    (13) 

where: Wmax is the maximum electromagnetic energy stored in the cavity. Since 
the maximum electric energy is equal to the maximum magnetic energy at 
resonance, Wmax can be calculated with one of the following relations: 

2 2
max max max max

v

1 1d , d
2 2 v

W E v W H v 
 

   .          (14) 

For of an ideal dielectric P represents the power losses due to the 
currents induced in the metal walls (Joule effect), PJ. If the dielectric in the 
cavity is real, the losses caused by cyclic electric polarization, Pdiel, must be also 
taken into account, so that in this case 

dielJP P P  .    (15) 
 For the high frequencies representing the working range of the 
waveguide (GHz), the Joule losses inside the metal walls can be calculated with 
the following formula (Miner, 1996): 
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where: δ is the penetration depth, σ is the wall conductivity and Et , Ht 
are the electric and magnetic field components, tangential to the wall surface Σ. 

Let us consider again the two basic modes, TM and TE. Using the 
relations presented in the previous section, the mathematical expressions for Q 
can be established. 

For the TMnlq mode the maximum magnetic energy is calculated with 
the relation: 
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where:  *2H  H H  and · represents the dot product. The result depends on 

whether n ≠ 0 or n = 0, and also q ≠ 0 or q = 0. In the general case, for n ≠ 0 and 
q ≠ 0, the calculation can be done only using a numerical integration technique 
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(Angot, 1961). Using the expressions for Hr and Hθ and introducing the 
notations 
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the final expression of Wmg max in TM mode can be written as: 
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 The Joule losses in the metal walls of conductivity σ, based on (16), 
have thus the following expressions: 
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where the previously defined notations for the integrals I1,…I6 have been used. 
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If the dielectric inside the cavity is supposed to present losses, with the 
complex permittivity 

' "j    ,    (25) 
then the power dissipated in the lossy dielectric may be evaluated using the 
relation 
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In the case of complex permittivity, the complex propagation constant, γ, is  
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where: αd is the attenuation due to dielectric losses and β is the phase constant, 
having the expressions (Petrescu, 2002): 
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Using the previously defined integrals, the additional power dissipation 
introduced by the lossy dielectric in the TM mode has the expression: 
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For the TEnlq mode the maximum  electric energy is: 
2

*
max max 2 d d d d .

2el
v v

EW W v r r z
 

 

     E E  (31) 

Using the expressions for Er(r,θ,z), Eθ(r,θ,z) given by relations (11), (12) and 
the notations for I1, …I6, where the constant pnl is replaced by '

nlp , the final 
expression for Wmax in TE mode is : 
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The Joule losses in the metal walls, calculated using (16), have the final 

expression: 
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Similarly, if the dielectric, supposed to be uniform, is lossy, the power 

dissipated by cyclic polarization is: 
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The quality factor is thus given by the expression: 
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4. Results and Discussions 

 
The quality factor of a cylindrical resonator with metal walls, 

containing a lossy or lossless dielectric, has been calculated for several TE and 
TM modes. The integrals I1,…I6, for which there is no direct analytical, closed 
form solution, have been calculated by numerical integration using the 
MATLAB routine quad. A precursory study of the accuracy of the available 
MATLAB routines for single valued scalar function integration (quad, quadgk, 
quadl) lead to the conclusion that , for the integrals in question, all routines gave 
similar results. In the end the routine quad, more frequently used, was chosen 
for this study. 

The numerical values used in calculations were: a = 1 cm, c = 2 cm, σ = 
= 5.96  107 S/m (copper). Three cases of lossy dielectric were considered, their 
dielectric constant and loss angle being given in Table 1 for 3 GHz 
(http://www.rfcafe.com/references/electrical/dielectric-constants-strengths.htm). 

Table 2 presents the results obtained for the TM mode when the cavity 
is empty (air) and for the three lossy dielectrics indicated in Table 1.  
 

Table 1 
Electrical Parameters for the Lossy Dielectrics 

Dielectric εr tgδ 
a) ice 3.2 0.0009 
b) water (distilled) 80.4 0.157 
c) soil (sandy) 3.55 0.0062 

 
 

Table 2 
Quality Factor and Resonance Frequency in TM mode 

  
Dielectric 

n = 0 n = 1 
q =0 q = 1 q = 0 q = 1 

l = 1 l = 2 l = 1 l = 2 l = 1 l = 2 l = 1 l = 2 
 
 

Q 

air 10,958 16,602 8,982 12,696 10,375 14,037 10,788 14,210 
ice 978.3 1,019.8 953 994.7 971.8 1004 976.6 1,006 
water 6.35 6.4 6.23 6.06 5.89 5.9 6.14 6 
sandy 
soil 

158.0 159.2 157 158.5 157.4 158.3 158 158.8 

 
 

fr 
(GHz) 

air 11.4 26.3 13.7 27.4 18.3 33.5 19.7 34.3 
ice 6.4 14.7 7.66 15.3 10.22 18.72 11.0 19.2 
water 1.28 2.9 1.52 3.05 2.04 3.73 2.20 3.82 
sandy 
soil 

6.09 13.9 7.27 14.54 9.71 17.77 10.49 18.22 

 
In Table 3 the results for the TE mode and the four types of dielectric 

filling are presented. 
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Table 3 

Quality factor and resonance frequency in TE mode 
  

Dielectric 
n = 0 n = 1 

q = 1 q = 2 q = 1 q = 2 
l = 1 l = 2 l = 1 l = 2 l = 1 l = 2 l = 1 l = 2 

 
 

Q 

air 21,564 28,414 23,590 29,382 11,625 24,118 14,259 25,446 
ice 1,039 1,056 1,045 1,058 985 1,046 1,006 1,049 
water 6.4 6.4 6.4 6.4 6.35 6.4 6.4 6.4 
sandy 
soil 

159.7 160.1 159.8 160.1 158.2 159.8 158.8 160 

 
 

fr 
(GHz) 

air 19.77 34.32 23.65 36.70 11.55 26.53 17.38 29.54 
ice 11.05 19.9 13.22 20.5 6.45 14.83 9.71 16.5 
water 2.20 3.82 2.63 4.09 1.28 2.96 1.93 3.29 
sandy 
soil 

10.49 18.22 12.55 19.48 6.13 14 9.22 15.68 

 
Analyzing the data in Tables 2 and 3 some conclusions, outlined below, 

can be formulated. 
1) Very high quality factors are obtained when the cylindrical resonator 

is empty. The values of Q are significantly higher for the TE mode, and increase 
for increasing values of n, l and q. From this perspective and taking into account 
that the lowest order (fundamental) modes are preferred in practice due to the 
simplicity of excitation procedure, the most frequently used mode in a 
cylindrical resonator is TE011 (Annino, 2006). 

2) When a lossy dielectric fills the resonator the quality factor, as well 
as the resonance frequency, have a dramatic decrease. The values of Q in the TE 
and TM modes now become comparable, almost equal in some cases. The 
decrease is caused by the loss factor, tgδ, and is most evident for the dielectric 
with the highest losses (distilled water). The dielectric constant, εr, also plays an 
important part in the decrease of Q and fr. 

3) The three examples of lossy dielectrics were chosen so as to simulate 
an accidental penetration of the resonator with water (liquid or ice) or sandy 
soil. The data were considered for the highest frequency available in literature,  
f = 3 GHz, which is lower in many cases than that obtained for fr. However, it is 
well-known that for lossy dielectrics the loss angle increases with frequency, so 
that it may be expected that Q has even lower values than those obtained in 
Tables 2 and 3. 

4) These results show that the presence of water or dust in the cavity 
(even if not completely filled) may be easily detected by the sudden decrease of 
the quality factor and by the shift of the resonance frequency to lower values. 

5) The mathematical expressions for the quality factor can be further 
used for an analysis of the resonator sensitivity to geometrical imperfections 
(small imperfections of the radius a  and the length c). 
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5. Conclusions 
 

The study conducted in this paper demonstrates the importance of 
maintaining a “clean” cavity inside the electromagnetic resonator, in order to 
obtain a high quality factor. The results are presented as mathematical 
expressions (not analytical expressions) since they require numerical 
quadratures for the evaluation of Q. 

The expressions established for Q will be used in a further optimization 
and sensitivity study. 
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UNELE ASPECTE REFERITOARE LA FACTORUL DE CALITATE AL 
CAVITĂŢILOR REZONANTE CILINDRICE 

 
(Rezumat) 

 
Lucrarea prezintă modul de calcul exact al factorului de calitate, Q, pentru 

rezonatorul cilindric cu pereţi metalici, luând în calcul şi posibilitatea ca dielectricul să 
aibă pierderi. Expresiile matematice obţinute presupun realizarea unei integrări 
numerice pentru evaluarea lui Q. Se face o simulare pentru a studia influenţa 
permitivităţii şi a tangentei unghiului de pierderi asupra lui Q în modurile TM şi TE, 
considerând dielectrici cu pierderi precum apa distilată, ghiaţa şi depunerile de sol 
nisipos. 


