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Abstract. The short-term load forecast (STLF) is crucial for distribution 
network efficient operation, being extensively used in decisions regarding 
generation and reserve power planning at system level, security monitoring and 
offline analysis, or market transaction planning. The paper proposes a 
comparative analysis regarding the performance of the two most used artificial 
neural networks (ANN) approaches for STLF – the Multilayer Perceptron (MLP) 
and backpropagation through time (BPTT). The two types of ANN were tested 
for a real MV/LV substation from Iasi. The results validate the superiority of the 
BPTT method for power demand forecast and the advantage of the MLP method 
for the energy load forecast. 

 

Keywords: load forecast; artificial neural networks. 
 
 

1. Introduction 
 

The load forecast accuracy plays a significant role for electricity utilities 
in ensuring efficient operation, quality of supply and rational development. 
                                                
*Corresponding author: e-mail: bogdan.neagu@tuiasi.ro 
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Short term forecast usually concern the daily peak load, the load in specific day 
intervals, the daily or weekly electricity demand. An accurate STLF is crucial 
for distribution network efficient operation, being extensively used in decisions 
regarding generation and reserve power planning at system level, security 
monitoring and offline analysis, or market transaction planning respectively. 

The STLF is carried out using an accurate mathematical model, a 
database that contains measured and recorded load values, and weather data, 
combined in a user interface application tool. According to the information 
available in the literature (Bhandari et al., 2018; Kumar & Dixit, 2018; Moon et 
al., 2018; Gavrilaş, 2002; Neagu, 2014; Olegario et al., 2019; Tian et al., 2018), 
STLF studies have shown a significant dependence on the electricity demand 
and the weather conditions, of which the most important being the temperature. 
Other factors include the non-steady patterns of time series (measurements) and 
the specific electricity demand occurring in special event days (public or 
religious celebrations, worker strikes and so on). 

In this paper, a comparative study regarding the performance of the two 
ANN approaches for STLF is performed. For this reason, in the following 
sections the theoretical aspects and a study case were presented. Thus, in section 
two are synthetically presented the analysis of time series using statistical 
methods and artificial neural networks. Section three deals with the STLF 
problem statement using ANN, and in section four a case study is proposed, 
where the two ANN methods are explained – Multilayer Perceptron (MLP) and 
backpropagation through time (BPTT). The simulation results are compared 
using STLF parameters and a critical discussion are made. Finally, several 
conclusions are drawn. 
 

2. Time Series Analysis Using Statistical Methods and Artificial Neural 
Networks 

 
The analogy between the statistical models and the artificial neural 

networks (ANN), showing at the same time how a backpropagation network 
without hidden layers using linear activation functions leads to results similar to 
those obtained with an autoregressive moving average (ARMA) model, and, by 
using sigmoid activation functions and a larger number of neurons, a nonlinear 
ARMA model (Panapongpakorn & Banjerdpongchai, 2019).  

The autoregressive (AR) statistical model can be described with an 
equation written as 
 

         1 21 2 ... .ny t y t y t y t p a t                                 (1) 
 

If a third order model is used, then: 
 

         1 2 31 2 3 .y t y t y t y t a t                                  (2) 
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The i coefficients are estimated using the well-known least squares 
method, used also for computing weights in backpropagation ANNs. Equation 
(2) can be represented using an ANN having the structure depicted in Fig. 1. 

 

 
yt-1 yt-2 yt-3 

w2 

w3 

yt 

w1 

 
 

Fig. 1 − An ANN describing a third order autoregressive model. 
 
The ANN from Fig. 1 does not have hidden layers, and its output 

neuron uses a linear activation function, combining the inputs. Given the 
simplifying assumption used to represent an AR process with an ANN, the latter 
model can be more powerful than a statistical approach. The only difference is 
that, while the statistical model finds the exact solution using the pseudoinverse 
matrix, the ANN model needs an iterative algorithm, called backpropagation 
(Gavrilaş, 2002; Neagu, 2014; Olegario et al., 2019). The weights w1, w2, w3 
will have, after the training stage, the values of 1, 2 and 3. 

Mathematically, the moving average model can be formulated as: 
 

         1 21 2 ... qy t a t t t t q                ,               (3) 
 
and, for a third-order model: 
 

         1 2 31 2 3y t a t t t t               .                 (4) 
 

The θi coefficients from (3) and (4) are estimated using the least squares 
method used by the ANN backpropagation algorithm, but the recurrence caused 
by using the error from the previous step as input can lead to major difficulties. 
For modeling of this process, a recurrent ANN must be used, as illustrated in 
Fig. 2, using an algorithm that minimizes the squared deviations between the 
actual and the desired values. This type of algorithm varies sequentially each 
unknown variable, until the minimal error, value is reached and the iterative 
process continues until no new solution is found. For obtaining the weights wi, 
they are incremented with values depending on the sign of the first derivative of 
the error with respect to these weights and on the desired precision of the 
forecast. The desired solution is found after a much higher number of iterations, 
while the statistical method uses the faster Seidel-Gauss algorithm. 
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Fig. 2 − An ANN describing a third order moving average process. 
 

ANNs allow an easy modelling of exogenous inputs, by increasing the 
number of input neurons. For instance, if an exogenous input variable x(t) 
delayed with a period must be used, which would lead to a simplified AR 
process written as: 
 

           1 2 3 11 2 3 1y t y t y t y t w x t a t                      (5) 
 
then the corresponding ANN would be the one depicted in Fig. 2, which shows 
that exogenous inputs do not make the ANN structure and training algorithm 
more complicated. 

In order to be analyzed using the Box-Jenkins method, the time series 
must be stationary (Abu & Ismail, 2019). Non-stationary time series must be 
initially processed in this regard, a task usually performed offline. The 
previously presented ANNs are reproductions of the Box-Jenkins method and 
can be used only on stationary time series. It is known that an ANN with hidden 
layers and sigmoid activation functions can approximate non-linear functions, 
thus skipping this data-preprocessing step (Farhadi, 2017). The equivalent 
statistical model is the nonlinear regression with moving average. 
 

3. Short Term Load Forecast using Artificial Neural Networks 
 
The last decades of research (Georgescu et al., 2004; Gavrilaş, 2002; 

Moon et al., 2018; Raza & Khosravi, 2015) show a significant shift towards 
load forecast methods that use artificial intelligence elements. Artificial 
intelligence techniques, especially ANN are powerful and flexible tools. MLP-
ANNs can be used for the approximated of multivariable time series, which are 
harder to approach using traditional statistical methods (Fernandes et al., 2019). 
More than 50% of the ANN models use the backpropagation algorithm, which 
takes advantage of the ANN ability to discover data correlations without the 
help of human expertise (Neagu, 2014). The main input information needed for 
STLF is illustrated in Fig. 3. 
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Fig. 3 − An ANN describing a third order moving average process. 

 
ANNs are easy to build and train and can memorize complex 

interdependencies even in the absence of a functional model, being able to find 
solutions for highly complex nonlinear models (which many of the typical 
electrical network analysis problems are). For STLF, MLP require an extended 
database with demand history recordings, from which the training data is 
extracted. The training data must be constantly updated, for future ANN 
retraining. This approach can have two disadvantages (Gavrilaş, 2002): 

• The initial training data is insufficient. 
• The training data does not fully cover the range of the input data, as 

new models replace old recordings. 
Recurrent neural networks (RNN) can handle better the sequential 

nature of time-dependent series, including the electricity demand (Peng et al., 
2019). By using RNNs, the load can be considered as a collection of recordings 
in which time is irrelevant. Such ANNs are capable of exploiting all the 
information hidden in the time variation function.  

Particular types of RNNs use multilayer architectures with static and 
dynamic (feedback) neurons. These ANNs proved to be very efficient, because 
they use concurrently the classification capabilities of multiple layer structures 
and the time characteristics as inputs. They exhibit other remarkable time-
related capabilities, such as: they ‘remember’ sequences of records from the 
recent past and can ‘forget’ information too old to bring useful input 
information. 
 

4. Study case. Results and Discussions 
 
In this section, two types of ANNs were tested for STLF of the 

electricity demand at the LV bus of a MV/LV substation belonging to the 
distribution network that supplies the city of Iasi. First, some considerations 
regarding the essential steps for building an MLP or Recurrent BPTT for STLF 
model are given. Any ANN, regardless of its type, requires an input database 
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with recordings taken for an extended time period (years, if possible), which 
should contain data modeling the load behavior in time and other useful data, 
especially weather related. The database used in the case study was obtained by 
continuous monitoring and recording the total electricity demand obtained from 
the Smart Meters mounted at the LV side of the analyzed MV/LV substation. 
The substation supplies residential and tertiary (textile factory, hotel, school) 
consumers. The measurement showed a non-linear load behavior in time. The 
instantaneous power at time t, P(t), can be represented as a linear combination 
of four independent components:  
 

         base meteo sp.ev ,P t P t P t P t P t                             (6) 
 

where: Pbase(t) is the base power, independent of external factors; Pmeteo(t) 
represent the power influenced by the weather; Psp.ev.(t) is the power associated 
to special events; Pε(t) is a random small component.  

Moreover, the weather-dependent power can be separated into other 
four components (Neagu, 2014): 
 

         meteo 1 2 3 4P t T t N t V t H t                         (7) 
 

where: where: T – temperature; N – cloud density; V – wind speed, H – 
humidity; i , (i = 1...4) – conversion coefficients. 

Equations (6) and (7) show that weather conditions have a significant 
influence on the electricity demand. For choosing the ANN inputs for load 
forecast, a statistical self-correlation analysis must be performed for load values 
at different moments in time. It is also of interest the correlation between the 
load and the temperature or other indices such as the peak load duration, 
maximum apparent power, loss duration. In order to establish the Pearson 
correlation coefficients (cc) for two statistical variables x and y, the following 
equation can be used (Georgescu et al., 2004): 
 

 

   2 2
2 2

cov ,

x y

x y x y x ycc
x x y y 


 

  
                                    (8) 

 
where: cov(x, y) is the covariance between x and y, and 2

x  and 2
y  is the 

variance of x and y.  
The load recordings database was analyzed considering only two typical 

scenarios in a year (cold season – winter and warm season – summer), and the 
weekdays were considered working (Monday – Friday) and weekend (Saturday 
and Sunday). The correlation coefficients were computed between the active 
power demand and other quantities of interest, at the LV substation level. Table 
1 shows the average self-correlation coefficients between the power to be 
forecasted P(0h) and other power readings from previous intervals, and the 
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average correlation coefficients between P(0h) and earlier temperatures and 
other quantities of interest. 
 

Table 1 
Self-correlation Between P(0h) and Another Earlier Power Measurements, 

Temperatures and Other Variables 
Power cc  Temperatures  cc  Other  cc 
P(–1h)  0.9157  T(–1h)   0.7324  Tmed prev. –0.0016 
P(–2h)  0.8206  T(–2h)   0.6905  Smax   0.0335 
P(–3h)  0.6472  T(–3h)   0.6346  TP   0.2165 
P(–4h)  0.3017  T(–4h)   0.4201  τP   0.1981 
P(–5h)   0.1823  T(–5h)   0.3897    
P(–6h) –0.1986  T(–6h)   0.2365    
P(–7h) –0.3092  T(–7h)   0.2117    
P(–8h) –0.3441  T(–8h)   0.3152    
P(–9h) –0.3227  T(–9h)   0.3614    

P(–10h) –0.3165  T(–10h)   0.2498    
P(–11h) –0.3014  T(–11h)   0.0932    
P(–12h) –0.2921  T(–12h) –0.1175    
P(–24h)   0.9972       
P(–168h)   0.9899       
P(–192h)   0.9812       

 
The analysis of the correlation coefficients from Table 1 yields the 

following important conclusions: 
 The strongest correlations of P(0h) are with the power from the same 

moment of the previous day P(–24h), same day from the previous week 
P(–168h), and previous day of the previous week P(–192h). 

 There is a strong correlation of P(0h) with the powers for the previous 
three hours P(–1h), P(–2h) and P(–3h). Beyond this window, starting 
from hour h – 4, the correlation coefficient drops, having a good self-
correlation (0.3) on 7,…,12 hours before the forecast time. 

 The best correlations between the power and the temperature occur for 
h – 1, h – 2 and h – 3. 
The correlation coefficients with other quantities of interest (average 

temperature of the forecast day, peak load and peak load duration from the 
previous day) are relatively small and should not be included in the ANN 
training data. Such a correlation analysis can easily decide the information 
included in the ANN training data. Other useful information can be: the week 
day name (Monday – Sunday) or type (working – weekend) and the forecast 
hour (1,…,24). The ANN training data used in the case study included the 
weekday type and the forecast hour.  

Based on the results of the statistical correlation analysis, the load data 
used in the ANN training set consisted, for each input model, of the following 
values for power: : P(–1h), P(–2h), P(–3h), P(–24h), P(–168h), P(–192h) and 
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temperature: T(–1h), T(–2h), T(–3h). The day index used a single neuron, with 
input one for working days (without significand differences) and 0.5 for 
weekend days. The hour was binary encoded, with five neurons for the 24 hours 
of a day. Thus, an input model can be described formally using: 
 

     1 2, , ,P t f P t T t z h      ,                               (9) 
 
where: 1 is the load delay (1 = 1, 2, 3, 24, 168, 192 hours); 2 – the 
temperature delay (2 = 1, 2, 3 hours); z – the day of the week; h – the hour of 
the day. 

Each training model contained 15 inputs, as described above, and one 
output value, which is the forecasted load. The number of neurons of the hidden 
layer was determined by trial. The hidden and output neurons use the logistic 
sigmoid activation function. The training data set had 336 input-output pairs, 
corresponding to 2 weeks of data. The values were scaled in the (0, 1) interval. 
Data scaling is a very important step, because is leveling the magnitude orders 
of different measurement units (MWh, Celsius degrees, day index). The 
Resilient Backpropagation algorithm (RBA) proposed by (Riedmiller & Brown, 
1993) was used for training. Fig. 4 shows the PMS architecture used in the case 
study. Trials determined the optimal number of hidden neurons as 12. The 
average training SSE for each model dropped after 20,000 training  cycles  to 
1.8  10–5. The forecasting capabilities of the trained ANN were verified with a 
test data set, for which the absolute mean square error (MSE) was computed as: 
 

  real forecast RNA

1 real

1MSE % 100.
N

i

i

P P
N P


                                 (10) 

 
 

. . . 

P(t-1) P(t-3) 
P(t-2) P(t-24) 

P(t-168) 
P(t-192) 

T(t-1) T(t-3) 
T(t-2) 

1 12 

P(t) 

Power Temperature 

Z 

Day 

H1 H2 H3 H4 H5 

Hour  
Fig. 4 − The MLP architecture used in the case study. 

 
The test data set used 168 input-output pairs, corresponding to the week 

following the interval used for training. For each input model, the 
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corresponding output was computed through forward propagation and the result 
was compared to the desired value. The maximum percent error was 3.24%, 
only two of the 168 models exceeding the 3% threshold. 

For the proposed forecast model, the only scenario in which the MLP 
inputs can use real measured data corresponds to the load forecast for the hour 
that follows the last available measurement. If a larger forecast window is 
desired (a day, up to a week), forecasted values need to be used for the ahead 
intervals, for which no measurements are available. This approach has the risk 
of accumulating the forecast errors, hour by hour. The tests showed that the 
accumulated errors do not lead to significant forecast errors. The maximum 
percentage deviation was 2.78%, only 6 models exceeding the 2% threshold. 

Fig. 5 presents the distribution of the percentage MSE for the entire test 
week, while Figs. 6 show comparisons between the real and the forecasted load 
for Friday and Sunday, the days with the highest obtained errors. The forecast 
error is always lower than the 3% considered satisfactory in practice (Abedinia 
& Amjady, 2016). 
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Fig. 5 − The percentage error distribution for the test data. 
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Fig. 6 − Load forecast for Friday and Sunday. 

 
The STLF is a dynamic process. The layered architecture of MLP show 
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sometimes limited performance in modeling dynamic behaviors which require 
for the forecast at moment t+1 data from the previous moment, t. Also, the 
STLF can benefit from using certain connections suggested by previous 
experience regarding the studied problem, because the active and reactive load 
is undoubtably a dynamic process. Thus, a feedforward ANN should include 
feedback connections when the neural network is time-delayed. In this manner, 
feedforward ANNs can simulate dynamic systems, but only for short time 
intervals (Costa et al., 1999). 

For solving complex problems, previous knowledge must be used in the 
input data. For daily load forecast (both power and energy) on 24 hourly 
intervals (the next day), the input data should contain not only the previous day 
peak load, but also exogenous inputs regarding the type of the day (working, 
weekend), weather conditions  and the hourly load for the previous three hours, 
which is an example of previous knowledge implementation. Following the 
aforementioned  considerations,  a  recurrent BPTT was used next for STLF 
(Fig. 7). This ANN has a single output, for the forecasted load at hour  t.  For 
24-hour forecast, the base ANN from Fig. 7 was unfolded with 24 copies, one 
for each load profile interval. The result is depicted in Fig. 8. A BPTT is a 
feedforward network, but it is also modelling a relation between events 
occurring in different moments in time. 

 
 Peak load of the 

day before 

Average temperature 

P(t-2) 

P(t-1) 

Base  
neural 

network 
 

6 inputs 1 output    

P(t-3) 

  

 

P(t) 

Day

  
Fig. 7 − Base neural network. 

 

  

   

 

 

 

 
........ 

....
Copy 1 Copy 24 Copy 3 Copy 2 

 
 Peak load. 
 Day 
 Average temp. 
 P(t-1) 
 P(t-2) 
 P(t-3) 
 

P1 P24 P2  
Fig. 8 − Time-deployed neural network. 

 
It is very important to define different types, of connections between 

neurons, with or without time delay. In this way, regardless of the problem 
complexity, the information is stored in the neuron weights during the training 
process. Also, in BPTT networks, the user can specify different outputs for each 
ANN copy. Thus, a general ANN architecture can be built, which can solve 
complex problems overcoming the limitations of the multilayered structure. In 
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these case study, the same database and statistical correlation analysis were used 
to build the BPTT from Fig. 9, which uses 10 inputs, as follows: 
 The load recorded for given previous hours: P(t–24), P(t–168), P(t–192). 
 The type of day (1 – working; 0.5 – weekend). 
 The temperature in the previous three hours T(t–1), T(t–2), T(t–3). 
 The load in the previous three hours P(t–1), P(t–2), P(t–3). 

 
 

P(t-169) 

T(t-2) 

P(t-1) 

Base  
neural 

networks 
(14 hidden 
neurons) 

 

10 inputs 1 output 
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P(t-168) 

T(t-3) 

P(t-2) 

  

P(t-24) 

T(t-1) 

P(t-3) 

    
 

Fig. 9 − The base ANN for hourly load forecast. 
 

Based on trial testing, the base ANN had 14 hidden neurons and was 
unfolded in 24 copies, one for each hour of the day. The same RBA was used 
for training. For the daily load forecast at LV substation side, the average MSE 
per model, reached the value of 2.81  10–5 after 20,000 training cycles. 
Although it requires longer training times, the main advantage of the BPTT 
method is the possibility of making 24-hour forecasts, while the simple MLP 
can provide results for only 1 hour. The BPTT was tested on the same data and 
achieved a maximum percent error of 1.72%, smaller than for the MLP error 
achieved earlier. The error distribution for the entire test set is given in Fig. 10. 
The real and forecasted 24-hour load curves are compared in Fig. 11 for 
Sunday, the day with the highest forecast errors. 
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Fig. 10 − The test data set forecast errors. 
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Fig. 11 − The real and forecasted load for Sunday. 

 
 

5. Conclusions 
 
The short-term load forecast for distribution network represent an 

important task in the transition to future super grids, as an efficient tool, 
extensively used in decisions making process regarding the power networks 
operation, security monitoring and market transaction planning. In the paper, a 
comparison between the MLP and BPTT approaches, showing the superiority of 
the BPTT for power demand forecast and the advantage of the MLP method for 
the energy load forecast was tested. The proposed ANN approach shows that 
both methods have prediction errors in the accepted range, and con be used with 
success for STLF of active power or energy demand or consumptions. 
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PROGNOZA PE TERMEN SCURT A SARCINII UTILIZÂND REŢELE 
NEURONALE ARTIFICIALE 

 
(Rezumat) 

 
Prognoza sarcinii pe termen scurt este o problemă esenţială pentru funcţionarea 

eficientă a reţelei electrice de distribuţie, fiind utilizată pe scară largă în deciziile privind 
planificarea puterii de generare şi a rezervei la nivel de sistem, la monitorizarea 
securităţii şi analiza offline, precum şi la planificarea tranzacţiilor de piaţă de energie. 
Lucrarea propune o analiză comparativă cu privire la performanţa a două din cele mai 
utilizate reţele neuronale artificiale (RNA) pentru prognoza pe termen scurt a sarcinii, şi 
anume Perceptronul multistrat (PMS) şi a reţelelor recurente cu propagare înapoi în 
timp (BPTT). Cele două tipuri de RNA au fost testate pentru un post real de 
transformare (MV/LV) din Iaşi. Rezultatele obţinute arată superioritatea metodei BPTT 
pentru prognoza cererii de energie şi validează avantajul utilizării metodei PMS pentru 
prognoza energiei consumate. 



 


