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Abstract. This work proves the usefulness of bringing together features 

extracted from electroencephalographic (EEG) data in several classifiers when a 

motor imagery task was performed. Autoregressive model, amplitude 

modulation and phase synchronization methods were used for selecting the 

features in order to form the hybrid combination for the feature vector. In the 

classification phase, linear discriminant analysis, quadratic discriminant analysis, 

Mahalanobis distance, k nearest neighbors and support vector machine as 

classifiers were verified. The results reveal that the combination of the phase 

locking value and phase lag index as measures for phase synchronization with 

support vector machine classifier can effectively improve the classification 

performance and outperforms all other tested combinations. 
 

Keywords: motor imagery; brain computer interface; feature vector; 

classification algorithms. 

 
1. Introduction 

 

Brain-computer interfaces (BCIs) are devices that interface with the 

brain signals to enable interaction with the environment. BCIs have the 

potential to improve the quality of life for many people affected by disorders of 
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the brain, spine or limbs through direct interface with the nervous system (Hughes 

et al., 2020). BCIs have been used in rehabilitation, communication, in computer 

gaming and wheelchair locomotion (Lucas et al., 2018). Electroencephalogram 

(EEG) records the brain activity from the scalp using electrodes. EEG-based 

BCI systems are widely used because they are simple and inexpensive 

compared to other systems developed for recording brain signals. The majority 

of the EEG based BCI systems handles the potential P300 (Guger et al., 2009) 

and sensorimotor rhythms (SMR) (Yuan and He, 2014). Motor imagery (MI) is 

the cognitive process of imagining the movement of a body part without 

actually moving it (Aggarwal and Chugh, 2019). When motor information is 

processed, a decrease of sensorimotor rhythm amplitude can be observed 

(desynchronization). When there is no motor activity – the sensorimotor brain 

areas are at rest or inhibited – the amplitude of the SMR is high 

(synchronization). These pattern changes in SMR amplitude can be used to 

trigger an external device in order to display real-time sensory feedback or to 

execute the intended action (Van Dokkum et al., 2015). 

Motor imagery based BCI provides an interface for the patients with 

motor impairment or for those in completely locked-in-state to interact with the 

environment by controlling external devices. 

The purpose of this research is to investigate which combination of 

features and which classifier are more appropriate to be used in a motor imagery 

paradigm with EEG signals recorded from a single subject during a period of 

eight consecutive years.  

The paper is structured in five sections: the EEG dataset is detailed in 

Section 2, the used methods are described in Section 3, the results and 

conclusions in Section 4, and Section 5, respectively. 

 

2. EEG Signals 

 

The EEG signals were recorded from a single subject during the period 

2012 – 2019. The brain activity was acquired with a sampling frequency of 

256Hz, using gMobilab+ module (gtec, 2020) and BCI 2000 platform 

(Mellinger and Schalk, 2007) in The Signal Processing Lab from the Faculty of 

Medical Bioengineering. The EEG recordings were attained by positioning EEG 

electrodes over the brain scalp in a standardized 10–20 electrode system. The 

handled electrodes were CP3, CP4, P3, C3, Pz, C4, P4 and Cz and the reference 

electrode was placed on the right ear. The subject had to perform the following 

motor imagery paradigm: when a right/left arrow appeared on the computer 

screen the subject had to imagine the hand movement indicated by the arrow. 

The white screen indicated that the subject had to relax. 30 arrows appeared 

randomly. The subject was trained before each session by performing a session 

which involved the real movement of the hands. The sessions were performed 

in different days, months and years. 
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Session 1 was recorded in 2012, sessions 2 and 3 in 2013, session 4 in 

2014, session 5 in 2015, sessions 6, 7, 8 in 2016, session 9 in 2017, session 10 

in 2018 and session 11 in 2019. 

3. Methods 

Autoregressive (AR) process, phase synchronization (PS) and 

amplitude modulation (AM) were used as relevant methods for feature 

extraction. The measures for each used method were: 

 Itakura Distance (ID) and symmetric Itakura Distance (SID) for AR 

process; 

 phase locking value (PLV) and phase lag index (PLI) for PS; 

 the amplitude modulation energy index (AMEI) for AM. 

The methods are explained in detail in (Kong et al., 1995; Estrada et al., 

2009; Gysels and Celka, 2004; Gonuguntla et al, 2013; Stam et al., 2007; Eva 

and Lazăr, 2019; Hrişcă-Eva and Lazăr, 2020).  

The frequency band 8 - 12 Hz corresponding to Alpha rhythm and all 

eight channels were taken into consideration for further processing. Three datasets 

were formed: 𝑦𝑅𝐼𝐺𝐻𝑇  𝑛  for EEG signal corresponding to right hand movement 

imagination, 𝑦𝐿𝐸𝐹𝑇  𝑛  for EEG signal corresponding to left hand movement 

imagination and 𝑦𝑅𝐸𝑆𝑇  𝑛  for EEG signal corresponding to relaxation state. 

The EEG signal, 𝑦 𝑛 , can be expressed as the output of an AR process: 

 

𝑦 𝑛 = − 𝑎𝑘𝑦 𝑛 − 𝑘 + 𝑛 𝑛 
𝑝
𝑘=1 ,   (1) 

 

where 𝑎𝑘  are the parameters of the model, 𝑝 is the model order and 𝑛(𝑛) the 

unpredictable part of the EEG signal 𝑦 𝑛 . 
It is shown that the minimum of mean square error (𝑀𝑆𝐸𝑦 ) (Kong et 

al., 1995): 

 

𝑀𝑆𝐸𝑦 = 𝑎𝑇𝑅𝑦 𝑝 𝑎,     (2) 

 

where 𝑎 =  1 𝑎1 𝑎2 …𝑎𝑝 
𝑇

, 𝑅𝑦 𝑝  is the autocorrelation matrix of 𝑦 𝑛 , and T 

the transpose of a matrix, leads to the optimum AR model. 

If 𝑦𝑅𝐸𝑆𝑇  𝑛  passes through 𝐴𝑅(𝑝) model characterized by the 𝑎𝑅𝐸𝑆𝑇   
parameters, the minimum MSE is defined by: 

 

𝑀𝑆𝐸𝑦𝑅𝐸𝑆𝑇 ,𝑎𝑅𝐸𝑆𝑇 =  𝑎𝑅𝐸𝑆𝑇  𝑇𝑅𝑦𝑅𝐸𝑆𝑇  𝑝 𝑎
𝑅𝐸𝑆𝑇 ,  (3) 

 

and if the same signal passes through AR(p) model, caracterized by 𝑎𝑅𝐼𝐺𝐻𝑇  

results the MSE as follows: 
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𝑀𝑆𝐸𝑦𝑅𝐸𝑆𝑇 ,𝑎𝑅𝐼𝐺𝐻𝑇 =  𝑎𝑅𝐼𝐺𝐻𝑇  𝑇𝑅𝑦𝑅𝐸𝑆𝑇  𝑝 𝑎
𝑅𝐼𝐺𝐻𝑇 ,  (4) 

 

ID for right hand movement imagination is: 

 

𝐼𝐷𝑅𝐸𝑆𝑇−𝑅𝐼𝐺𝐻𝑇 = log 
𝑀𝑆𝐸

𝑦𝑅𝐸𝑆𝑇 ,𝑎𝑅𝐼𝐺𝐻𝑇

𝑀𝑆𝐸
𝑦𝑅𝐸𝑆𝑇 ,𝑎𝑅𝐸𝑆𝑇

 .   (5) 

 

 In a similar manner, for 𝑦𝐿𝐸𝐹𝑇 𝑛 ,  the ID for left hand movement 

imagination 𝐼𝐷𝑅𝐸𝑆𝑇−𝐿𝐸𝐹𝑇  is defined.  

The symmetric Itakura distance, 𝑆𝐼𝐷𝑅𝐼𝐺𝐻𝑇 , for right hand movement 

imagination (Estrada et al., 2009) is: 

 

𝑆𝐼𝐷𝑅𝐼𝐺𝐻𝑇 =
1

2
 𝐼𝐷𝑅𝐸𝑆𝑇−𝑅𝐼𝐺𝐻𝑇 + 𝐼𝐷𝑅𝐼𝐺𝐻𝑇−𝑅𝐸𝑆𝑇 ,  (6) 

 

 𝑆𝐼𝐷𝐿𝐸𝐹𝑇  for left hand movement imagination can be obtaind in an 

identical way. 

The model order p=6 and model order p=10 were used for IDs and 

SIDs. 

For AM analysis, the temporal amplitude envelope is calculated using 

Hilbert transform ℋ{. } (Gysels and Celka, 2004). 

The analytic signal 𝑦 𝑛 𝑎  is computed by: 

 

 𝑦 𝑛 𝑎  = 𝑦 𝑛 + 𝑗ℋ{𝑦 𝑛 }    (10) 

 

The amplitude modulation (or the temporal amplitude envelope) for 

𝑦 𝑛 𝑎  , expressed by 𝑦𝐴𝑀 𝑛 , is denoted: 

 

 𝑦𝐴𝑀(𝑛)  =  𝑦 𝑛 2 + ℋ{𝑦 𝑛 }2.  (11) 

 

𝑦𝐴𝑀(𝑛) is multiplied by a 5 s Hamming window with 0.5 s delay and is 

obtained the temporal envelope for frame 𝑚, expressed by 𝑦𝐴𝑀(𝑚, 𝑛).  

The modulus of the Fourier transform of the amplitude modulation for 

frame 𝑚 is computed: 

 

 𝑦𝐴𝑀(𝑚, 𝑓) = |ℱ{𝑦𝐴𝑀(𝑚, 𝑛)}|,   (12) 

 

where f is the modulation frequency and ℱ{𝑦𝐴𝑀(𝑚, 𝑛)} is the discrete Fourier 

transform of 𝑦𝐴𝑀(𝑚, 𝑛). 

The energy of the 𝑗  modulation band, denoted by 𝐸𝑗  𝑚, 𝑓 , is computed 

as: 
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 𝐸𝑗  𝑚, 𝑓 = 𝑦𝐴𝑀𝑗
 𝑚, 𝑓 2    (13) 

 

and the average of energies over all the frames, expressed by  𝐸𝑗 𝑚, 𝑓            . 

The amplitude modulation energy index of the 𝑗 modulation band (Eva 

and Lazăr, 2019), 𝐴𝑀𝐸𝐼𝑗  𝑓 ,   is defined by the following expression: 

 

𝐴𝑀𝐸𝐼𝑗  𝑓 =
𝐸𝑗  𝑚,𝑓            

 𝐸𝑗  𝑚,𝑓            
𝑘

𝑗=1

 ,   (14) 

 

where k is the number of the modulation bands for the rhythm taken into 

account. For Alpha rhythm, k=3, because there are possible delta, theta, and 

alpha modulation bands. As the best results were obtained for Theta and Alpha 

modulation bands (Eva and Lazăr, 2019), only these cases were taken into 

account. The symbolization is modulation band_EEG rhythm (e.g. Alpha_Alpha 

and Theta_Alpha). The calculus was applied for 𝑦𝑅𝐼𝐺𝐻𝑇  𝑛  and for 𝑦𝐿𝐸𝐹𝑇 𝑛  
and two 𝐴𝑀𝐸𝐼𝑠 were achieved. 

 PLV value is expressed as: 

 

   𝑃𝐿𝑉 =   𝑒𝑗∆𝜑 𝑡   ,   (15) 

 

where 𝜑𝑥 𝑡  and 𝜑𝑦 𝑡  are instantaneous phases of 𝑥 𝑛  and  𝑦 𝑛  EEG signal, 

respectively, and  ∆𝜑 𝑡 =  𝜑𝑦 𝑡 − 𝜑𝑥 𝑡 . 

PLI (Stam et al., 2007) is stated as: 

 

  𝑃𝐿𝐼 =   𝑠𝑖𝑔𝑛 ∆𝜑 𝑡𝑘      ,   (16) 

 

 𝑠𝑖𝑔𝑛 is the signum function and  .   denotes the average over the time. 

In order to calculate the phase synchronization parameters, four 

combinations for EEG signals, Cz-C3, Cz-C4, Pz-C3 and Pz-C4, were taken 

into account. The above described steps were conducted for right and left hand 

movement imagination. 

Discrimination between right and left motor imagery was performed 

using linear discriminant analysis (LDA), quadratic discriminant analysis 

(QDA), Mahalanobis distance, k nearest neighbors (kNN) with k=5 and support 

vector machine (SVM) (Lotte et al., 2018). The k fold cross validation (k=5) 

was used for estimating the classification rates. 

4. Results 

Eight features vectors (FV), denoted from A to H, were proposed using 

the combinations of the mentioned features: 
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 FV A - AMEIs for Alpha_Alpha and Theta_Alpha; 

 FV B - PLV and PLI; 

 FV C - IDs model orders 6 and 10 ; 

 FV D - SIDs model orders 6 and 10; 

 FV E - IDs model orders 6 and 10, AMEIs for Alpha_Alpha and 

Theta_Alpha; 

 FV F - PLV, PLI, AMEIs for Alpha_Alpha and Theta_Alpha; 

 FV G - PLV, PLI, IDs model orders 6 and 10; 

 FV H - PLV, PLI, SIDs model orders 6 and 10. 

 

In Table 1 to Table 8 are displayed the classification rates achieved with 

feature vector A to feature vector H, respectively. The best results are marked 

with dark blue. 

 
Table 1 

Classification Rates (%) for Feature Vector A 

Session LDA QDA MD kNN SVM 

1 50 65.5 69.5 93.38 66.5 

2 53.25 60 74 94.96 70.75 

3 51.25 66.75 67.75 94 61.75 

4 51.75 71.5 89.5 97.46 80 

5 49.5 65 66.5 93.88 65.25 

6 63.5 72.25 89.75 98.04 90 

7 52.5 65.5 65 93.29 79.75 

8 52.25 59 70.5 93.63 62.5 

9 50.5 72 83 95.54 78.25 

10 52.5 66.25 66.75 93.71 58.75 

11 51.75 61.75 59.75 92.75 67.25 

 
Table 2 

Classification Rates (%) for Feature Vector B 

Session LDA QDA MD kNN SVM 

1 66.24 82 81.87 96.9 99.03 

2 62.41 82.6 81.14 96.75 99.21 

3 68.13 77.8 77.01 95.78 99.33 

4 57.66 82.91 82.12 96.68 98.97 

5 68.92 77.68 77.01 95.95 99.15 

6 58.03 80.41 80.23 96.5 98.78 

7 64.96 82.24 82.24 97 99.51 

8 66.36 83.33 82.42 96.84 98.72 

9 66.73 81.02 80.72 96.7 99.39 

10 61.01 75.79 74.15 95.49 98.84 

11 68.07 79.87 79.74 96.54 99.76 
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Table 3 

Classification Rates (%) for Feature Vector C 

Session LDA QDA MD kNN SVM 

1 55.83 100 100 87.36 82.5 

2 64.17 99.17 99.17 92.22 86.67 

3 50 95.83 95.83 90.83 86.67 

4 73.33 93.33 90.83 84.17 81.67 

5 61.67 95 95 88.47 85.83 

6 91.67 96.67 96.67 98.89 93.33 

7 62.5 95 91.67 90.56 89.17 

8 74.17 96.67 95 92.64 89.17 

9 77.5 93.33 92.5 93.33 94.17 

10 81.67 99.17 99.17 97.22 96.67 

11 80 97.5 91.67 94.31 95 

 
Table 4 

Classification Rates (%) for Feature Vector D 

Session LDA QDA MD kNN SVM 

1 54.17 100 100 89.44 84.17 

2 66.67 100 100 94.72 93.33 

3 49.17 94.17 94.17 89.86 89.17 

4 75 86.67 86.67 85.14 86.67 

5 63.33 96.67 96.67 91.67 90.83 

6 86.67 98.33 98.33 95.83 88.33 

7 61.67 96.67 95.83 92.5 85.83 

8 67.5 97.5 97.5 95.28 84.17 

9 83.33 96.67 96.67 95.97 93.33 

10 75 98.33 98.33 95.69 99.17 

11 90 96.67 95.83 95.56 95 

 
The highest classification rate of 98.04% was obtained with classifier 

kNN (Table 1). SVM attained the best classification rate of 99.76% for feature 

vector B and for many sessions the classification rates were above 99% using 

SVM (Table 2). In Table 3 is shown that the maximum classification rates were 

achieved for feature vector C using QDA and MD classifiers. The same remarks 

as for feature vector C, are for the classification rates achieved with feature 

vector D (Table 4). 
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Table 5 

Classification Rates (%) for Feature Vector E 

Session LDA QDA MD kNN SVM 

1 52.88 56.35 67.12 91.06 64.23 

2 52.69 55.77 65.77 91.6 64.81 

3 52.88 58.27 66.35 91.35 63.27 

4 52.88 58.27 66.54 90.45 61.15 

5 52.88 55.19 67.69 91.54 60.58 

6 52.69 56.35 66.35 93.01 63.65 

7 52.5 53.65 67.88 91.6 63.65 

8 52.5 56.15 64.23 90.96 62.12 

9 52.88 53.46 67.5 91.96 63.85 

10 52.88 55.96 66.92 92.88 60.96 

11 52.31 56.54 65.77 92.21 62.88 

 
Table 6 

Classification Rates (%) for Feature Vector F 

Session LDA QDA MD kNN SVM 

1 50.24 52.74 53.28 90.89 55.92 

2 50.78 52.84 53.13 91.03 56.65 

3 51.08 53.13 53.86 91.27 55.63 

4 51.13 55.68 56.95 91.73 58.56 

5 50.24 52.94 53.77 91.38 54.21 

6 54.89 57.19 57.73 92.12 58.37 

7 50.49 52.98 53.18 91.69 57.14 

8 50.64 51.61 52.79 91.4 54.45 

9 51.47 54.5 55.48 91.3 58.02 

10 50.49 52.94 51.42 91.09 52.89 

11 49.56 52.15 53.42 91.46 54.35 

 
Table 7 

Classification Rates (%) for Feature Vector G 

Session LDA QDA MD kNN SVM 

1 64.29 73.7 73.64 93.87 92.18 

2 61.9 71.15 69.39 93.33 91.84 

3 66.5 69.5 69.22 93.3 90.99 

4 57.82 70.18 69.44 92.66 90.14 

5 66.89 69.16 69.16 93.23 90.65 

6 57.99 70.29 70.41 93.91 93.42 

7 63.1 70.63 69.5 93.69 94.95 

8 67.18 75.17 75.96 94.78 93.65 

9 64.91 70.52 70.07 93.17 93.14 

10 60.6 71.77 70.52 94.18 93.25 

11 65.08 73.58 74.49 94.62 94.22 
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Table 8 

Classification Rates (%) for Feature Vector H 

Session LDA QDA MD kNN SVM 

1 64.34 72.68 73.13 93.77 92.57 

2 62.07 71.15 68.99 93.45 92.12 

3 65.7 69.84 69.16 93.14 91.55 

4 58.11 71.37 70.41 93.36 92.12 

5 66.44 69.16 68.31 93.24 91.27 

6 58.56 69.61 70.69 94.03 94.33 

7 62.81 70.46 69.73 94.12 95.12 

8 67.35 75.51 76.36 94.87 93.42 

9 64.74 71.26 70.18 93.67 93.37 

10 61.05 71.15 71.03 94.11 92.86 

11 66.21 74.66 75.17 94.6 94.61 

 

For feature vectors E and F the highest classification rates were 

obtained with kNN classifier (Table 5 and Table 6). The highest classification 

rate using feature vector G was achieved with SVM classifier (Table 7), and for 

feature vector H for kNN classifier (Table 8). 

In Fig. 1 are displayed the means of classification rate for each features 

vector.  

 
 

Fig. 1 − The means of classification rates for each features vector from A to H. 

 
The most consistent results for all feature vectors used were obtained 

using kNN classifier. The smallest mean of classification rates (51%) was 
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obtained with LDA classifier and feature vector F. The highest mean of 

classification rates was achieved for feature vector B and SVM classifier. 

 

5. Conclusions 

 

The classification rates have not been better in recent sessions than in 

the first ones. So, it can be concluded that the training of the subject did not 

determine an improvement of the performances. 

The proposed combination of PLV and PLI phase synchronization 

extracted features with SVM classifier get the best mean of the classification 

rate from all the other cases. The mentioned hybrid combination significantly 

discriminates the two classes with the mean of classification rate of 96.47%, 

while in (Hrişcă-Eva and Lazăr, 2020), when one individual feature was 

employed, the maximum value of the mean of classification rate attained only 

80% (using AMEIs for Alpha_Alpha with kNN classifier).  

 In (Hrişcă-Eva and Lazăr, 2020), the highest classification rate was 

93.33% using ID (no matter the order 6 or 10) and MD classifier. In the present 

paper, the maximum classification rate of 100% was obtained with features 

vectors combining ID model orders 6 and ID model order 10 and SIDs model 

orders 6 and 10.  

 Overall, the classification rates using hybrid combinations of features 

are higher than the classification rates obtained by applying individual features 

from the sets of FVs. 

Results show that the proposed approach enhances the classification 

rate and that the SVM classifier performs very well in classifying EEG signals 

using the combination strategy of feature extraction. 

 The future work implies recording EEG signals from other subjects for 

long period of times, searching for an adaptive method for selecting the suited 

feature combination and looking for other possible combinations of features. 
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COMBINAREA DE TRĂSĂTURI EXTRASE DIN SEMNALUL 

ELECTROENCEFALOGRAFIC – STUDIU DE CAZ  

 

(Rezumat) 

 

Prezentul studiu dovedeşte eficienţa combinării trăsăturilor relevante extrase 

din semnalele electroencefalografice într-o paradigmă creier-calculator ce implică 

imaginarea motorie. Metodele utilizate pentru extragerea trăsăturilor şi pentru formarea 

vectorului hibrid de trăsături sunt modelul autoregresiv, modulaţia în amplitudine şi 

sincronizarea de fază. Pentru clasificarea trăsăturilor s-a utilizat analiza discriminantă 
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liniară, analiza discriminantă pătratică, clasificatorul bazat pe calcularea distanţei 

Mahalanobis, algoritmul celui mai apropiat k vecin şi a clasificatorului cu support 

vectorial. Rezultatele obţinute indică faptul că indicele de întârziere al fazei şi indicele 

de blocare al fazei, folosiţi pentru sincronizarea de fază împreună cu clasificatorul cu 

suport vectorial, îmbunătăţesc performanţa ratelor de clasificare şi surclasează celelalte 

combinaţii testate. 

 

 

 

 
 


