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Abstract. The aim of this paper is to describe the large classes of pseudo-

random number generators (the congruent linear generator and the generators 

with displacement registers) and their functional properties. The theory of 

pseudo-random number generators is necessary in defining the theoretical 

methods underlying the design and analysis of string algorithms. Those 

algorithms, that have the necessary random characteristics, are currently 

adopted to generate cryptographic keys, used in complete cryptographic 

systems (CSS). The paper concludes with a case study on the effectiveness of 

statistical testing of randomness, one of the fundamental methods of analyzing 

the security of a CCS. 
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1. Introduction 

 

Random number generators (RNG) have a wide range of use (neural 

networks, image processing, genetic algorithms, video games), and the best 

known generator types are true random number generators (TRNG) and pseudo-

random number generators (PRNG). While the former use truly random factors 

(cosmic noise, oscillators), the others are based on different types of algorithms, 
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or input values obtained from the states of the devices on which they run 

(Meyer and Tuchman, 1979). 

PRNGs are successfully used in GIS (Geographic Information System) 

applications, for dynamic modeling or stochastic simulation. More recently, 

they are used for password protection operations in RFID (Radio Frequency 

IDentification) devices. TRNGs have been successfully implemented in FPGAs 

(Muhammad and Qasim, 2009). 

The generation of pseudo-random numbers, used in the construction of 

unpredictable cryptographic keys for an attacker is a fundamental cryptographic 

primitive. A method often used in the construction of cryptosystems is given by 

applying the bitwise XOR operation between a random string and the message 

to be encrypted. Algorithms that generate strings of numbers relatively 

independent of each other and that have random properties are the basis for the 

implementation of PRNGs. A random number represents a singular value of a 

random variable. If the distribution is not specified, then it is assumed to be 

uniform in the range [0, 1]. It can be said about a number that it is 

(pseudo)random only from the analysis of the way it was generated. A number 

in a string is random if all the numbers in the string generated before it had the 

same probability of occurrence. These numbers must be statistically 

independent, so that the information about the numbers already generated does 

not determine the knowledge of the number to be generated. 

To obtain true random numbers it is recommended to use hardware 

generators, as any PRNG running on a computer is a deterministic algorithm 

and generates strings of numbers with properties different from those of true 

random ones. One such property is periodicity, caused by the fact that the 

generator uses the computer's memory, so that, after a number of iterations, the 

algorithm returns to an internal state already crossed, thus entering an infinite 

cycle. Another property is that by entering the same initialization values into a 

PRNG, it will produce the same string of numbers. 

PRNG implementations may have features considered unacceptable in 

order to pass statistical tests: 

- poor dimensional distribution; 

- for certain initial conditions, the period may be shorter than expected; 

- certain bits may have more random characteristics than others; 

- successive values generated in a string may not be independent; 

- lack of uniformity of the generated numbers. 

There are statistical tests of randomness that allow an efficient 

analysis of the output of a PRNG. PRNGs that successfully pass this analysis 

are called cryptographically secure (CSPRNG) and have good statistical 

properties, being able to withstand a cryptographic attack (NIST Special 

Publication 800-57, 2007). 
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2. Features of CSPRNG 

 

The first requirement of CSPRNG (Cryptographically Secure Pseudo-

Random Number Generator) is that it must satisfy the "next-bit" test, in the 

sense that given k bits of a randomly generated string, there is no algorithm to 

predict the next bit generated, with a probability greater than 1/2. Practice has 

shown that a generator that manages to pass this test, will pass the other 

statistical tests in a polynomial time to verify the randomness of the generator. 

CSPRNGs are characterized by resistance to attacks if the current state 

is known and do not allow the determination of the previous string of numbers 

generated, neither the deduction of the next state of the generator. One such 

high-security generator is BBS (Blum Blum Shub), but it has the disadvantage 

of long processing time. Block ciphers can be converted to CSPRNGs by 

running in CBC, CFB, or OFB modes. For an arbitrarily chosen key, a data 

block with the values 0, 1, 2, ..., is encrypted. The initial value of the counter 

can be any non-zero value. Thus, a CSPRNG generator with a period of 2
n
 for 

an n-bit block can be obtained (Kelsey et al., 1998). 

From a mathematical point of view, the algorithm for generating a 

string of pseudo-random numbers is based on the calculation of a uniformly 

distributed discrete random variable. 

A discrete random variable x∈ {1, 2, …, n} is evenly distributed if 

P(xi) = 1/n  for 1  i  n. The calculation of such a variable uses type functions 

g:M 
k
  M, where M represents the subset of natural numbers that can be 

represented in the computer, and k is a value that defines the generator. 

Generating a string of pseudo-random numbers requires establishing the initial 

values x1, x2, ..., xk, which form the seed of the generator, using the recurrence 

relation: 

                             xn = g (xn – 1, xn – 2, ..., xn – k),   n > k                     (1) 

 

Because M is a finite set, it means that the string xn is periodic. There 

are at least two conditions that the generator thus defined must meet: 

‒ the period of the generator to be long in relation to the number of 

generated values; 

‒ the generated values should not be correlated. 

These conditions can be met by using the appropriate g function. The 

most frequently used methods are the congruent ones, in which recurrence is of 

the form: 

        xn = f(xn – 1, xn – 2, ..., xn – k) mod m              (2) 

 

with f : M 
k
  M  a generation function, and k and m values that define the 

generator. 

The most used functions f are the linear ones: 
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        xn =(a1 xn – 1 + a2 xn – 2 + ... + ak xn – k + c) mod m  (3) 
 

where a1, a2, ..., ak, c and m are integer values that characterize the generator. 

Usually x1, x2, …, xk are the initial values, and ai , c  {0, 1, …, m-1}. The 

generated values belong to the set {0, 1, …, m-1}, and the maximum period m, 

this being usually the maximum positive integer that can be represented in the 

computer. 

The choice of parameters ai and c is a difficult one, these being 

determined, as a rule, following the efficiency tests. The most commonly used 

generators are those of the 1st order: 
 

xn + 1 = axn + c  mod m       (4) 
 

If c = 0, the generator is called multiplicative congruent, and if c ≠ 0, 

the generator is called mixed congruent. 

 
3. The Linear Congruential Generator 

 

The linear congruential generator (LCG) is a pseudo-random string 

generator, which respects the mathematical relation: 
 

    xn = (axn-1 + b) mod m    (5) 
 

where xn represents the n element of the string, while xn-1 is the previous element 

in the string. a, b and mod m are constant values, while the seed is given by the 

value of x0. 

The generator period is less than or equal to m. For a, b and m chosen 

accordingly (b is relatively prime with m), the generator will have the maximum 

period m. The constants thusly chosen are used in the implementations of linear 

congruent generators that pass the spectral test within the randomness test 

batteries, for dimensions 2, 3, 4, 5 and 6. 

The advantage of this type of generator is the speed, as few operations 

are required, but due to their predictability, their use in cryptography is not 

indicated. All types of polynomial congruent generators (linear, square and 

cubic) have been broken (Paar and Pelzl, 2010).
 

 
4. The Linear Feedback Shift Register 

 

The linear feedback shift register (LFSR) has two component parts: the 

shift register and the feedback function. In essence, the shift register is 

represented by a string of bits, having a length equal to their number. When 

generating a bit, all bits in the register are shifted to the right. The last bit on the 

right that leaves the register after moving is the generator output. Completing 
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the register with a new bit on the first position on the left is done by calculating 

a value given by a function that uses the other bits of the register (Fig. 1). 

Generators that use displacement registers are easy to implement. 

The feedback function is performed by the XOR operation between 

certain bits in the register, the list of these bits being called the sequence "tap" 

or Fibonacci configuration. LFSR is the most common type of shift register 

used in cryptography, a reason being the fact that due to the relatively simple 

feedback function, both its optimized implementations and mathematical 

methods for analyzing the randomness of the generated string were developed. 
 

 
Fig. 1 ‒ Shift register with feedback. 

 

An n-bit LFSR can be in one of the 2
n
-1 possible states (the state in 

which all the bits of the register are 0 is not taken into account), and can 

generate a string of 2
n
-1 pseudo-random bits before repeating the process. 

The construction of a polynomial primitive of degree n mod 2, is 

realized by choosing a polynomial and testing the primality condition, which is 

relatively difficult to achieve, due to the large number of non-zero coefficients, 

preferred in cryptographic applications (Perrig et al., 2004). 

The internal state of an LFSR consists of the next n generated bits, 

which can lead to the determination of the feedback scheme from only 2n 

generated bits, by using the Berlekamp-Massey algorithm.
 

 

5. The Generalized Feedback Shift Register 

 

The generalized feedback shift register (GFSR) is an attempt to improve 

the results obtained by running statistical tests, based on the theory of trinomial 

primitives of the form x
p
 + x

q
 + 1. This type of shift register can be expressed 

by the expression: 

xi = xi – p   xi – q    (6) 

 

where each xi represents a vector of dimension w ∈ {0, 1}. The generator has a 

maximum period of 2
p
-1 and is obtained by dividing x

n
-1 by the trinomial 

primitive  x
p
 + x

q
 + 1, taking into account the smallest value of n (n = 2p-1). 

A number that respects the relation Mn = 2
n
-1, with n integer, is called 

Mersenne number, and if Mn is prime, then it is called prime number Mersenne, 

having useful properties for generators. A variant of GFSR based on linear 
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recurrence is Twisted GFSR (TGFSR), proposed in 1992 by Matsumoto and 

Kurita to solve the problem of the initial values of the GFSR generator. In turn, 

TGFSR was improved, obtaining the MT algorithm (Mersenne Twister), with a 

period of 2
19937

-1 and a uniform distribution in space with 623 dimensions 

(Prouff and Roche, 2011).
 

 

6. Feedback with Carry Shift Register 

 

This generator (FCSR – Feedback with Carry Shift Register) is similar 

to an LFSR generator, having in common both the displacement register and the 

feedback function. FCSR also uses a transport register. The bits in the "tap" 

sequence are not XOR operated, but are added to the contents of the shift 

register, and the result of mod 2 represents the new bit, which will enter the 

shift register on the first position to the left of the register. The same result 

obtained at summation, is divided by 2, thus becoming the new content of the 

transport register (Fig. 2). 
 

 
Fig. 2 ‒ Feedback with Carry Shift Register. 

 

The length of the transport register must be at least equal to log2t, where 

t represents the number of bits in the "tap" sequence. The maximum period of 

an FCSR is q-1, where q (connection integer) is a prime number of the form: 

 

q = 2q1 + 2
2
q2 + 2

4
q4 + … + 2

n
qn – 1    (7) 

 

for which 2 must be primitive root. 

If the FCSR leads to a string of 0 or 1 of n bit, then the initial state must 

be rejected. Since the initial state of an FCSR is actually a key of a string digit, 

it follows that a generator based on an FCSR can have a lot of weak keys. 

 
7. Non-Linear Feedback Shift Register 

 

If in LFSR or FCSR a complex feedback function is implemented, a 

shift register can be obtained with non-linear feedback (NFSR). In this case 
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there is no mathematical ground on which the analysis should be based, so in 

practice several problems may arise: 

‒ the output string may contain a significant difference between bits 

with value 0 and those with value 1; 

‒ the periods of the generator depend on the choice of the initial values; 

‒ the maximum periods are much shorter than expected; 

‒ despite the fact that the output string initially has a random appearance, 

it can end up cycling on a single value. 

The difficulty of the theoretical analysis of the non-linearity of the 

generator is also valid in terms of cryptanalysis, resulting in few methods of 

attacking the string figures based on these generators. 

 

8. Statistical Testing of Randomness 

 

PRNGs used in cryptographic applications (especially in key 

generation) must meet certain quality conditions of the randomness of the 

generated bits. Their output must be unpredictable in the absence of any 

information on the input data. The degree of randomness of the generated string 

can be highlighted by statistical tests, to determine whether a generator is 

qualified to be used for cryptographic purposes. However, no set of such tests 

offers the absolute guarantee that a particular generator is suitable for a 

particular cryptographic application, meaning statistical tests cannot replace 

cryptanalysis. 

The National Institute of Standards and Technologies (NIST) in the 

USA, has developed a battery of statistical tests of randomness, which aims to 

determine the deviations of a binary string from the quality of being random. 

However, the interpretation of these deviations must take into account as 

possible causes both the fact that the generator has design defects and the fact 

that the tested binary string has anomalies, which can be explained by the 

random appearance of the generated data. 

A string of random bits can be interpreted as the result of tossing a coin 

with faces marked "0" and "1", in which each toss will produce a 0 or 1 with the 

same probability of 1/2. Moreover, coin tosses are independent of each other: 

the result of a toss must not in any way influence a future toss. Such a 

mechanism is a perfect generator of random numbers, which is used as a term of 

comparison in the evaluation of real pseudo-random number generators. 

Numbers generated by a PRNG must be unpredictable, that is if the 

initial values are not known, the next number generated cannot be anticipated, 

no matter how many previously generated numbers are known. This property is 

called unpredictability before. It is also necessary that it is impossible to find 

the initial values, no matter how many generated values are known, which 

means unpredictability after. There must be no obvious correlation between the 

initial values and any of the values generated from them; each element in the 
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generated string must appear as the output of an independent random event with 

probability (1/2). 

To ensure unpredictability in advance, special care must be taken to 

obtain the initial values. The values produced by a PRNG are completely 

predictable if the initial values and the generation algorithm are known. As in 

many cases the algorithm is public, the initial values must be kept secret and 

chosen so that they cannot be deducted from the string it generates, as these 

initial values must also be unpredictable. 

Various statistical tests can be applied to a string in order to compare 

and evaluate its random nature. The properties of a random string can be 

characterized and described in probabilistic terms. There are an infinite number 

of possible statistical tests, each assuming the presence or absence of a 

repetitive element which, if detected, would indicate that the string is not 

random. In conclusion, no battery of tests is complete, and the results of 

statistical tests should be interpreted with caution to avoid incorrect 

conclusions. 

A statistical test verifies a specific null hypothesis (H0), in the sense that 

the tested string is random. Associated with the null hypothesis is the alternative 

hypothesis (Ha) which assumes that the string is not random. For each test, 

accepting or rejecting the null hypothesis will lead to the conclusion that the 

generator produces or not, random values. The acceptance or rejection of the 

null hypothesis must be based on the choice and use of relevant statistics on 

randomness. In the case of randomness, such a statistic has a certain distribution 

of possible values. A theoretical reference distribution of this statistic in the 

case of the null hypothesis is determined by mathematical methods, and on its 

basis a critical value is established. During the test, a test value of the statistics 

is calculated based on the data, which is compared with the critical value. If the 

test value is greater than the critical value, the null randomness hypothesis is 

rejected, otherwise the null hypothesis is accepted. 

Testing statistical hypotheses is a decision-making procedure with two 

possible results: either accepting hypothesis H0 (data is random) or accepting 

hypothesis Ha (data is not random). Possible errors are: 

- type I: the data is random, but hypothesis H0 is rejected; 

- type II: data is not random, but hypothesis H0 is accepted. 

The probability of a type I error is called the significance level of the 

test; can be fixed before the test and is denoted by . For a given test,  is the 

probability that the data is random and the test indicates that the data is not 

random. The common value of the threshold  in cryptography is about 0.01. 

The probability of a type II error is denoted by . For a given test,  is 

the probability that the data is not random and the test indicates that the data is 

random. Unlike ,  is not a pre-set value, but can take different values 

corresponding to different ways in which a string may not be random and its 

calculation is difficult. One of the main purposes of a statistical test is to 
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minimize the probability of a type II error. The probabilities   and  are 

dependent both on each other and on n (the length of the tested string), so that if 

two of these values are given, the third can be determined. In practice, the size n 

of the data sample and the level of significance  are established. A critical 

value is then chosen for a statistic so as to obtain the lowest possible value for 

the probability . 

Each test is based on a calculated value of the test statistics, which is a 

function of the data tested. If this value is denoted S and the critical value t, 

then: 

 = probability of type I error  = P(S > t || H0 is true) = P(rejection H0 | 

H0 is true) 

 = probability of type II error  = P(S  t || H0 is false) = P(acceptance 

H0 | H0 is false) 

Statistical tests are used to calculate a p value, which expresses the 

degree of contradiction of the null hypothesis. For these tests, each p value 

represents the probability that a random number generator will produce a less 

random string than the tested string.
 

For a value p = 1, then the string is considered perfectly random, while 

for a value p = 0 the generated string is considered completely non-random. For 

tests, a significance level  is chosen; if the value p  , then the null 

hypothesis is accepted, so the string appears as random. If the value p  , then 

the null hypothesis is rejected, and the string appears as non-random. The 

parameter  indicates the probability of a type I error. Normally α is chosen in the 

range [0.001, 0.01]. A value of  = 0.001 indicates the possibility that a string of 

1000 strings may be rejected by the randomness test. For a value p  0.001 a 

string will be considered random with a confidence threshold of 99.9% 

(Punnaiah et al., 2012). 

 

9. Case Study 

 

The Rijndael algorithm is already quite old and despite the fact that certain 

implementations have proven vulnerabilities following cryptographic analysis, it is 

still widely used in both hardware devices and software applications. 

The study presents a complete cryptographic system (CCS), wich is 

composed of three elements: the key generator, the database and the encryption 

and decryption application. The key generator is an optimized variant of the 

MWC generator (multiply-with-carry). 

The implementation has as premises the use of a computer network 

(Internet) in which encryption devices and storage media (computer stations and 

servers) are considered secure (by using firewall policies as well as antivirus 

and antispyware programs). If the computers on which the data encryption is 

performed were considered unsafe, the whole process would be useless. 
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Fig. 3 ‒ Component relationship mode. 

 

To test the application, two stations in a local network are sufficient, on 

which the encryption application is installed together with the database. No 

physical machines are required, and virtual machines can be used successfully 

(Microsoft and Oracle offer software for creating and using virtual machines). 

For the transmission of the database containing the partial 

cryptographic keys to CCS users, it is recommended to use a data network 

considered secure, or tunneling encryption methods. In the absence of a 

network, mobile storage devices can also be used to load databases on the 

computer stations where this system is installed. 

Algorithm for generating and storing partial keys: 

for an integer 'base', b ≥ 2 and integer coefficients a0, a1 . . . ar with a0 prime 

with b, the MWC generator of order r and base b has the state σ: 

 );,...,( 1 cxx r                                                 (8) 

where 0 ≤ xi’< b and c ∈ Z and T is a transformation rule: 

     )';',...,'(': 1 cxxT r                                      (9) 

for i < -1, xi’ = xi+1. x‘-1 and c’ are unique solutions for: 

    


 
r

i

ii cxabcxa
1

10 ''                                          (10) 

with 0 ≤ xi’< b. x‘-1 and c’calculated as follows: 

)(mod1

0 baA                                                   (11) 

It is performed as a whole in the range [0, b-1). Choose τ: 




 
r

i

ii cxa
1

                                                   (12) 

and calculate: 

                                          ))(mod(' 1 bAx                                                 (13) 

                              bxac /)'(' 10                                                  (14) 
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The value c, is the "carrier" (or "memory") of the state. The result of the 

state σ is OUT(σ)=x-r, where σ takes values according to the (8) formula. 

The normalized value is the real number x-r/b and c   is an arbitrary 

value and therefore, an infinity of states and output sequences are obtained. In a 

finite interval w
-
≤c≤w

+
 there is a finite number of periodic states. For any initial 

state, the generator output is probably periodic, depending on how far the c 

value is from the initial segment. 

A generalized scheme of the MWC generator, using as seed (initialization 

value) the clock of the system on which it runs, is shown in Fig. 4: 

 
Fig. 4 ‒ The classic MWC generator. 

 

The XOR-MWC generator used in the composition of the CCS is 

composed of two independent MWC generators (MWC1 and MWC2) working 

in parallel, with a time delay to generate different outputs. These MWC 

generator outputs represent the inputs for a function that performs the XOR 

operation for the binary values of the generator outputs, thus obtaining a final 

binary value which, transposed to decimal, returns the corresponding character 

value in the extended ASCII code (Fig. 5). 

 
Fig. 5 ‒ MWC generators working in parallel  

With the XOR function implemented at the outputs. 

 

Table 1 

Cryptographic Keys Used 

ID Key_Used Number of Generations 

0 1e4a1b03d1b6cd8a174a826f76e009f4 0 

1 8f32dfc68a0047a8e8bf1960e7ce79a0 1 

2 c738fa985a1800dedb297eb41c038bfe 0 
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In the idea of using a unique key for each encryption operation, the 

algorithm checks in Key_Used column, hash of previously used keys. If the 

hash is found in the list, the process of generating the encryption key is 

resumed. In the Number of Generations column you can see how many times 

the algorithm generated the same one. Weak key hashes can also be entered in 

this table to avoid using them (Table 1). For example, the hash 

1e4a1b03d1b6cd8a174a826f76e009f4 corresponds to the weak key 

0000000000000000 (for ID = 0), while for the key thisisasecretkey, the hash is 

8f32dfc68a0047a8e8bf1960e7ce79a0 (for ID = 1). 

The values obtained can be entered in a MySQL database from which 

the cryptographic application, with the help of other pseudo-random generators, 

selects the partial keys of which the encryption key is composed. 

Any attempt to obtain clear text from the encrypted text without holding 

the secret key, it is considered a cryptanalytic attack. Cryptographic analysis 

debates attack methods starting from minimal information about encryption 

keys, algorithms used, protocols authentication, clear text segments and the 

corresponding segments of the encrypted text, or just on the basis of one or a set 

of encrypted texts using the same algorithm. 

In essence, it is trying to determine a vulnerable point of the algorithm, 

which could be operated using methods for which the search time is 

considerably shorter than the time necessary to check all possible key 

combinations (brute force attack). 

There is still no cryptographic system that can be said to be complete 

safe, but those cryptosystems for which known attacks require a time too long 

to be considered practical.  

This study presents the advantage offered by the use of the 

implemented encryption algorithm of a very large number of cryptographic 

keys. To increase operational security, both the working mode that the 

algorithm chooses at a given time and the encryption key are not to be presented 

to the user who uses the simplified interface of the cryptographic application. 
 

10. Conclusions 

 

Freedom of choice brings into question the concept of entropy, which 

measures the uncertainty of a system. When the number of elements from which 

the source can choose to create messages increases, the uncertainty or entropy 

increases in the same proportion. In contrast, when the elements are well 

organized and there is no possibility of random choices, the entropy is low. In 

other words, when the recipient knows the probability of the messages, the 

entropy or the amount of information is low. The value of a specific segment of 

information depends on the probability of its occurrence. In general, when the 

probability of an item appearing in a message increases, its informational value 

decreases in the same proportion. 
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In 1965 A.N. Kolmogorov introduced the idea that the complexity of a 

data string can be defined by the length of the shortest binary program made to 

compute the string. So, the complexity of the data represents the length of their 

minimum description, specifying the final compressibility of the data. The 

Kolmogorov complexity of a string, also known as algorithmic information 

theory, is approximately equal to the entropy defined by C.E. Shannon for the 

same string, thus reaching a unification of the theory of descriptive complexity 

with information theory. These theories aim to provide a means of measuring 

information, and this association was possible due to the fact that Kolmogorov 

used in the demonstrations of theories the same fundamental element: the bit. 

The study presents this new system both to those interested in 

cryptography, for analysis and attempts to demonstrate the insecurity of the 

solution, and to potential users from the commercial environment. Demonstrating 

performance as well as security, recommends the complete cryptographic system 

as a new solution for protecting information in computer networks, with the 

amendment that for information with a high degree of confidentiality, it is 

necessary to adopt additional security solutions. The constant evolution of 

cryptanalytic methods, supported by continuous technological development, 

determines the entire community of cryptologists to constantly look for ways to 

optimize current security solutions, or to develop new ones. 

This paper marks a vital topic in Cryptography World: PRNG, 

highlighting the large classes of pseudo-random number generators and their 

functional properties. Additionally, the effectiveness of randomness statistical 

tests is pinpointed, which is a basic method of analyzing the security of an 

complete cryptographic system. 
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EFICACITATEA TESTĂRII STATISTICE A 

 CARACTERULUI ALEATORIU AL DATELOR FOLOSITE ÎNTR-UN 

 SISTEM CRIPTOGRAFIC COMPLET 

 

(Rezumat) 

 

Scopul acestei lucrări este de a descrie clasele mari de generatoare de numere 

pseudo-aleatoare (generatorul liniar congruent și generatoarele cu registre de deplasare) 

dar și proprietățile lor funcționale. Teoria generatoarelor de numere pseudo-aleatoare 

este necesară în definirea metodelor teoretice care stau la baza proiectării și analizei 

algoritmilor de șiruri. Acei algoritmi, care au caracteristicile aleatoare necesare, sunt 

adoptați în prezent pentru a genera chei criptografice, utilizate în sisteme criptografice 

complete (SCC). Lucrarea se încheie cu un studiu de caz privind eficacitatea testării 

statistice a caracterului aleatoriu a datelor, una dintre metodele fundamentale de analiză 

a securității unui SCC. 
 

 

 

 

 


