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Abstract. Environment understanding plays an important role in different 

computer vision-based applications, including autonomous vehicles, mobile 
robots and assistive systems. Usually, humans can solve this task by using their 
visual system. Whether humans look at images, videos or find themselves in 
real-life scenarios, they can easily locate and recognize objects of interest. The 
main goal in the development of intelligent mobile systems is to replicate this 
intelligence using a computer. Remarkable results for semantic segmentation and 
object detection have been obtained recently based on deep neural networks, 
especially in the automotive field. Still, the semantic instance segmentation 
remains a challenge, but a highly required output of the computer vision 
component of an intelligent mobile system such as an autonomous car.  

In this paper, we present the experiments we developed to evaluate the 
performance of the Mask R-CNN solution, emphasizing its accuracy and real-
time operation capability, correlated with the requirements of the envisioned 
applications. We then conclude on its advantages and limitations and propose 
several approaches for improvement. 
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1. Introduction  

 
Visual scene understanding is one of the fundamental and most 

challenging goals in computer vision. Both the industrial and scientific 
community put a lot of effort into developing computer vision-based 
applications, e.g., autonomous vehicles, mobile robots, assistive devices, which 
require reliable, semantic understanding of images in real-time. Scene 
understanding is achieved by performing a segmentation of the environment 
into elements of interest and by actually recognizing what the objects in the 
scene represent.  

The big successes of deep learning led to a revolution in the computer 
vision field. Therefore, it enabled new ways to solve the scene understanding 
task. In the last few years, various semantic segmentation and object detection 
solutions were proposed. These methods held good results in terms of accuracy 
(Dvornik et al., 2017; He et al., 2016), inference time (Redmon et al., 2016; 
Redmon and Farhadi, 2017; Redmon and Farhadi, 2018; Sandler et al., 2018; 
Paszke et al., 2016) or both (Zhao et al., 2019; Chao et al., 2019). However, 
semantic instance segmentation enables a richer understanding of the 
environment as it combines the advantages of both object detection (e.g., 
instance localization) and semantic segmentation (e.g., semantic class and per-
pixel segmentation). Most literature papers focus on improving the accuracy of 
the solution (Liu et al., 2018; Huang et al., 2019) rather than achieving real-
time processing. Still, the real-time requirement is critical, in the context of 
intelligent mobile systems. Therefore, there is a need for solutions both fast and 
accurate.  

This paper analyses the impact of two Mask R-CNN configuration 
parameters on both accuracy and inference time. Then, from the results obtained 
we conclude the advantages and the limitations imposed by the changes made. 
In the end, we propose various ideas for improvement.  

 
2. Semantic Instance Segmentation 

 
Instance segmentation combines two classical tasks of computer vision, 

object detection - whose scope is to localize individual objects in images, most 
often at a bounding-box level, and semantic segmentation - a task which 
classifies each pixel into a set of predefined categories but without 
differentiating between objects from the same category. Instance segmentation 
requires to correctly detect each object from an image and to precisely segment 
each detected object instance. 

Deep neural networks have opened up the path to remarkable results for 
semantic segmentation and object detection, especially in the automotive field. 
However, the challenge is still imposed by solving the semantic instance 
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segmentation, a highly required output for any intelligent mobile system such as 
autonomous cars.  

Generally, there are two main approaches for semantic instance 
segmentation: 

1) Proposal-based methods or detection-based methods: are based 
on pixel-wise refinement of object proposals. The task is decomposed into 
object detection and binary segmentation or classification. The method is 
strongly dependent on the quality of the object detection task and it fails if there 
is more than one instance inside of the box. 

2) Proposal-free methods or segmentation-based methods: generally, 
adopt two-stage processing, including segmentation and clustering. Therefore, 
these methods cluster pixel into instances based on semantic segmentation 
results. The clustering process aims to group the pixels that belong to a certain 
instance together. 

In (Zhang et al., 2015) the authors propose a method for instance 
segmentation and depth ordering of a monocular image, based on convolutional 
neural networks (CNNs) and an inference problem formulated in a Markov 
Random Field (MRF).  

Overlapping patches of different size are extracted from the image and 
then, for each patch, a forward pass through the CNN is performed. Given the 
output for differently sized patches, the results are merged into one single 
coherent prediction using a connected components algorithm and an inference 
in an MRF. Afterwards, some post-processing steps are applied so that object 
instances smaller than 200 pixels are removed and for each object with holes, a 
hole-filling task is performed. And last, objects are reordered and relabelled 
according to their depth within the patch. Despite the promising results, there 
are a few limitations worth mentioning. Firstly, the CNN predicts only one 
object class, car. And secondly, the method assumes the maximum number of 
instances present in a patch is six, including the background. Also, the number 
of predicted instances is restricted to nine car instances per image. 

A similar and improved method is proposed in (Zhang et al., 2016). The 
paper mainly focuses on improving the merging of the outputs obtained from 
the CNN for each patch. For solving the labelling problem for the entire image, 
the authors introduce a densely connected Markov Random Field. An 
improvement over the previous work is obtained by introducing a smoothness 
term into the MRF for removing the noisy tiny objects. In the algorithm, each 
pixel is described by a feature vector that contains the position of the pixel and 
its corresponding CNN output. Therefore, pixels with similar features will be 
more likely to be assigned the same label. Even if the authors obtained an 
improved instance label prediction over the previous work, the solution holds 
the same limitations: only one class type, a maximum number of nine instance 
predictions per image and the assumption that in a patch maximum of six 
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instances including the background could be present. A difference from the 
previous method is that instances are not ordered by depth. 

Arnab et al. (Arnab and Torr, 2017) propose an instance segmentation 
system that outputs a segmentation map. For every pixel on the map, both a 
semantic class and an instance label is specified. The instance label is used to 
identify different instances of the same semantic class. 

Compared to the methods described above, the solution considers the 
entire image when making predictions without the need for any post-processing 
steps like in (Zhang et al., 2015; Zhang et al., 2016). 

Also, the system handles a variable number of instances per image, in 
(Zhang et al., 2015; Zhang et al., 2016) this number was limited to nine 
instances per image. Two inputs are needed for the semantic instance 
segmentation system: the semantic segmentation predictions and a set of object 
detections. To improve the semantic segmentation quality and to recalibrate 
detection scores, the solution uses the FCN8 architecture, based on the VGG 
ImageNet model, which incorporates a mean-field inference of a CRF 
(Conditional Random Field) as the module's last layer and a Higher Order 
detection potential.  

The Mask R-CNN solution for semantic instance segmentation is 
proposed in (He et al., 2017). The authors extend the Faster R-CNN (Ren et al., 
2017) by adding a new branch to the network for predicting segmentation 
masks. Mask R-CNN has an identical first stage with Faster R-CNN which 
outputs for each candidate object a class label and a bounding-box offset. Faster 
R-CNN consists of two stages: a Region Proposal Network (RPN) which has 
the role of proposing candidate object bounding boxes and a RoIPool (Region 
of Interest Pooling) to extract features from each candidate box and to perform 
classification and bounding-box regression.  Following works, (Liu et al., 2018;  
Huang et al., 2019), try to improve the accuracy of Mask R-CNN, either by 
improving the FPN (Feature Pyramid Network) features, (Liu et al., 2018), 
either by addressing the correlation between the mask’s confidence score and its 
localization accuracy (Huang et al., 2019). These two-stage methods, generally 
require extra computation time as they need to re-pool features for each ROI 
(Region of Interest) and then process them, thus they are unable to meet the 
real-time requirement.  

Previous works on semantic instance segmentation focused on 
improving prediction accuracy rather than achieving real-time computation. 
Therefore, even if object detection and semantic segmentation methods reached 
real-time processing, there are only a few works that address the real-time 
instance segmentation problem. These methods, generally, trade prediction 
accuracy for real-time processing.  



Bul. Inst. Polit. Iaşi, Vol. 66 (70), Nr. 4, 2020                                     61 
 

3. Fine-Tuning Mask R-CNN 

 
 Mask R-CNN (He et al., 2017), is an extension of the Faster R-CNN 

network (Ren et al., 2017), which is widely used for object detection tasks. For 
a given image, it outputs the bounding box and the class label for each detected 
object in the image. The Mask R-CNN framework is developed on top of the 
Faster R-CNN framework (Fig. 1) therefore, for an image, besides the bounding 
box and the class label, the framework also outputs the mask for each detected 
object in the image. 

 

 
Fig. 1 – Mask R-CNN framework architecture (He et al., 2017). 

The development of intelligent mobile systems implies, among other 
things, faster execution of the pipeline as sometimes a critical decision has to be 
made (e.g., avoiding an obstacle). Therefore, these types of systems require 
neural networks that can make predictions that are both fast and accurate.  

Preliminary tests performed on Google Colab 
(colab.research.google.com) with the Mask R-CNN neural network, proposed in 
(He et al., 2017), showed that the inference time for an image using the best 
pre-trained model available was 19 seconds per image. The second-best model 
needed around 0.54 seconds per image to output the semantic instance 
segmentation results (around 2 frames per second), which does not meet the 
real-time execution requirement for an intelligent mobile system. Therefore, the 
scope of the experiments we have performed is to determine which network 
parameters could be fine-tuned to jointly maintain prediction accuracy and 
improve prediction speed. 

Two parameters were identified as having a greater impact on the 
inference time: the scale factor and the number of the region proposals. There is 
no domain specified in the paper for the two parameters. So, we designed two 
experiments in which we varied the value of these parameters to determine the 
influence on the inference speed and prediction accuracy. 
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In the following experiments, we have used the KITTI dataset (Geiger 
et al., 2012) which consists of 200 semantically annotated images. The dataset 
mainly contains classes from the automotive field and it also offers a 
benchmarking solution, to evaluate the instance segmentation task. The COCO 
dataset (Lin et al., 2014) is used in the training procedure. The train and val split 
of the COCO dataset contain around 83k, respectively 41k semantic instance 
annotated images.  

The models used in the experiments described below were acquired by 
training from scratch a network using modified values for some parameters. The 
process of training is time-consuming (e.g., lasting from hours to weeks), 
therefore we have chosen a lightweight backbone, R-50-FPN, of the Mask R-
CNN solution to speed up the experiments.  

The reported accuracy (AP) for the selected architecture is 34.5% and 
the inference time around 180ms, all metrics are computed for the COCO 
dataset (Lin et al., 2014). All Mask R-CNN reported baselines are trained and 
tested on a platform with powerful resources (e.g., servers with 8 NVIDIA 
Tesla P100 GPU accelerators).  In our case, the training part, as well as the 
testing one, was performed on a computing unit equipped with NVIDIA Titan 
RTX graphics processing unit. 

Experiment 1: The Impact of the Scale Parameter 

The solution proposed in (He et al., 2017), adopts image-centric 
training, thus every image in the training dataset is scaled such that their shorter 
edge is 800 pixels. Therefore, reducing image resolution is not a feasible 
solution to improve inference time, as images would be resized following the 
rule described above. 

 
Fig. 2 – The impact of the scale factor on accuracy and time. 
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For the first experiment, we propose to vary the scale parameter to 
conclude its impact over the inference time and accuracy. Thus, we have 
retrained the network by reducing by halving the scale factor each time.  

The results obtained for AP (Average precision), AP50 (Average 
precision with 50% overlap) and time using the R-50-FPN baseline can be 
observed in Fig. 2. To assess instance-level performance, we have used the 
evaluation benchmark defined for the KITTI dataset (Geiger et al., 2012). 

Regarding the accuracy, not all classes from the KITTI dataset are 
included in the COCO dataset (Lin et al., 2014), therefore the accuracy measure 
is reported only for the classes include in both datasets. There are eight common 
classes: person, rider, car, truck, bus, train, motorcycle and bicycle. 

 
Fig. 3 – The impact of the scale factor on per class AP. 

Analysing both Fig. 2 and Fig. 3, we observe a decreasing trend for 
both AP and AP50 metrics. Thus, we can conclude that the scale parameter has 
a direct impact on accuracy, as decreasing its value the performance of the 
network, in terms of accuracy, drops. Meanwhile, we should emphasize that 
inference time improves while decreasing the scale factor. Also, the network 
precision is lower for the classes poorly represented, e.g., bicycle, truck, in the 
training dataset, as it is pictured in Fig. 3. 

Considering the results listed above, we observe that decreasing the 
value for the scale parameter, improves the inference time, but on the other 
hand, it worsens the accuracy. We emphasize that we report the accuracy 
considering the whole image. 

Experiment 2: The Impact of the Region Proposals Value 

The Mask R-CNN framework incorporates in the first stage an RPN 
(Region Proposal Network) which generates a set of object proposals based on 



64                                          Otilia Zvorișteanu et al. 
 

 

the probability that an object is present there. The upper limit of these proposals 
represents another parameter for the network. Therefore, in the second 
experiment, we propose to vary this limit to conclude on its impact on the 
precision of the network and the inference time. The same datasets and 
benchmark method are used as in the previous experiment. The experiment 
scenario is the same, we had retrained the baseline model using the newly 
established values for the proposals limit before evaluating it. 

As observed in Fig. 4, by varying the limit of the RP (region proposals) 
value the performance of the network, in terms of accuracy, follows a smoother 
decreasing trend than the one observed in the first experiment. The variation has 
a greater impact on the evaluated metrics only when the limit is under 50 region 
proposals. Therefore, we can conclude that the variation of the scale parameter 
has a bigger impact on the inference time as well as on the precision of the 
network than the variation of the RP value. 

 
Fig. 4 – Impact of region proposals value on accuracy and time. 

The results from the experiments designed outline that better inference 
time could be obtained by decreasing the value of the scale parameter and also 
by reducing the number of region proposals. At the same time, the experiments 
emphasize that when the values of the two parameters are reduced the accuracy 
strongly decreases. Therefore, we plan to decrease the value of these parameters 
and investigate new ways to improve the accuracy measure. We intend to feed 
the network with inputs coming from a fast segmentation method and to post-
process (reconstruct) the results afterwards. Another solution would be to 
retrain the network with multiple values for the scale parameter (e.g., 800, 400 
and 200), in this way, the image would be scaled to the closest scale value. 
Also, many intelligent mobile systems, e.g., assistive devices, require 
information within a specific range, therefore we propose to remove the 
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unrequired information, e.g., data that is located further than a threshold 
distance, from the images. 

 
4. Conclusions 

 
It is well known that, in the context of an intelligent mobile system, 

time performance is an important requirement. Being built on top of the Faster 
R-CNN network, Mask R-CNN also inherits slow processing time. As the 
experiments designed highlight the inference time could be improved by 
modifying the two parameters, scale and RPN value. The main disadvantage 
that comes with these changes is that the precision of the network also 
decreases. A solution for this problem would be to replace the Faster R-CNN 
branch with another branch that outputs the same results, in terms of region 
proposals, but faster than Faster R-CNN.  

As described in the above experiments, there are only a few classes from 
the automotive field included in the COCO dataset (Lin et al., 2014). So, we plan 
to add and train the network with new classes, which are currently not included in 
the dataset (Lin et al., 2014) to adjust the network for the automotive field. 

The main limitations of semantic instance segmentation solutions come 
from dealing with occlusions and with objects that are incorrectly separated or 
fused together. So, we will investigate ways to post-process the results from the 
semantic instance segmentation system. 
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ÎNSPRE SEGMENTAREA SEMANTICĂ A INSTANȚELOR 
 ÎN TIMP REAL 

 
(Rezumat) 

 
Înțelegerea mediului joacă un rol important în diferite aplicații bazate pe 

vedere artificială (computer vision), inclusiv vehicule autonome, roboți mobili și 
sisteme asistive. Simțul vizual este cel care oferă oamenilor posibilitatea de a percepe și 
a înțelege mediul înconjurător. Aceștia sunt capabili să extragă informații, să localizeze 
și să recunoască cu ușurință diverse obiecte de interes din imagini, videoclipuri sau din 
scenarii reale bazându-se pe simțul vizual. Dezvoltarea de sisteme mobile inteligente 
presupune reproducerea unei astfel de inteligențe vizuale folosind un computer. 
Rezultate remarcabile pentru segmentarea semantică și detectarea obiectelor au fost 
obținute recent pe baza rețelelor neuronale profunde, în special în domeniul 
autovehiculelor autonome. Cu toate acestea, segmentarea semantică a instanțelor 
rămâne o provocare în domeniu, reprezentând, în contextul sistemelor mobile 
inteligente, un rezultat indispensabil componentei de vedere artificială. 
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În această lucrare, ne propunem să evaluăm performanțele soluției Mask R-
CNN prin intermediul unor experimente. Vom corela rezultatele obținute pentru 
acuratețe și capacitate de operare în timp real cu cerințele aplicațiilor menționate. În 
final, vom discuta despre avantajele și limitările soluției evaluate și vom menționa 
posibile abordări pentru a îmbunătăți metoda. 
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