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Abstract. The automated vehicle concept is of great interest nowadays for 

researchers in both academia and industry. These intelligent vehicles can 
contribute to increase people’s safety, reduce travel cost and travel time, improve 
the comfort of the driver, reduce traffic jams, and maximize the traffic flow by 
maintaining a minimal safety gap between vehicles. Taking these into account, 
this paper proposes a control architecture for an automated vehicle that 
incorporates a trajectory planner and a trajectory follower for the lateral 
dynamics and a predictive controller for the longitudinal dynamics. The aim of 
the proposed solution is twofold: i) to plan and follow a path, both in the 
longitudinal and lateral directions and ii) to avoid possible collisions with fixed 
obstacles on the road. The obtained results illustrate that the trajectory planner 
succeeds to compute an obstacle free path for the automated vehicle, and the 
trajectory follower controls the vehicle to track the generated path.  
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1. Introduction 
 

The researchers from academia and industry showed a great interest in 
automated vehicles, which lead to the development of advanced functionalities 
like adaptive cruise control, lane keeping, emergency braking. All of these have 
the purpose to ensure people’s safeness by maintaining a safety distance 
between vehicles and avoiding collisions, aiming at the same time at improving 
driving comfort and reducing the travel costs. An automated vehicle must be 
able to detect its neighbour vehicles and the obstacles along the road, to plan its 
trajectory and to follow it. In literature there are many studies which offer 
solutions for automated vehicles. In (Keviczky et al., 2006; Jiang and Astolfi, 
2018; Lin et al., 2019; Attia et al., 2014; Falcone et al., 2008) the authors 
propose algorithms to control the motion of vehicles along both longitudinal 
and lateral directions. These solutions ensure that the vehicle will follow the 
required path and velocity but, to obtain these, in literature different 
methodologies are proposed. In (Alirezaei et al., 2016), the authors introduced 
an obstacle avoidance strategy for a vehicle platoon. The aim of the solution is 
to avoid the collision between vehicles when a vehicle wants to merge with the 
platoon. A solution designed to prevent the collisions between a platoon of 
vehicles and pedestrians is described in (Ferrara and Vecchio, 2007). A 
methodology based on a multi-agent system with the task of controlling a 
platoon to avoid obstacles is proposed in (Gechter et al., 2011). In (Quirynen et 
al., 2020), the authors present a hierarchical solution based on nonlinear model 
predictive control (NMPC) for a vehicle to avoid obstacles. In (Rios-Torres and 
Malikopoulos, 2017, a velocity planning method for the vehicles that want to 
merge on motorway is introduced. In (Pauca et al., 2019), a solution for the 
longitudinal and lateral control of an automated vehicle is proposed without 
considering any obstacles that might appear on their path.  

This paper proposes a control architecture with the tasks to plan and 
follow a safe trajectory that maintains the vehicle on the road and avoids 
collisions with fixed obstacles encountered along the way. The architecture also 
includes a longitudinal velocity controller which ensures that the vehicle is 
moving with the desired velocity. The trajectory planner has the task of 
maintaining the vehicle on the middle of the lane until the sensors of the vehicle 
detect an obstacle. When this situation occurs, the trajectory planner generates a 
trajectory for the vehicle to avoid a possible collision with the fixed obstacle. 
The trajectory follower is represented by a lateral predictive controller with the 
task of controlling the steering angle of the vehicle, so that that the vehicle 
follows the path generated by the trajectory planner. This lateral controller uses 
a linear bicycle model to predict the states of the vehicle, in order to compute 
the control law. Moreover, a longitudinal controller is proposed with the task of 
controlling the longitudinal velocity of the vehicle. Both controllers are 
formulated as optimization problems with constraints imposed on the lateral 
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position of the vehicle, steering angle of the front tire for the bicycle model and 
on the longitudinal traction force, which represents the output of the 
longitudinal controller. The obtained simulation results illustrate that the 
trajectory of the vehicle was properly adapted to avoid the collision with a fixed 
obstacle. Also, the longitudinal controller ensures that the vehicle maintains the 
imposed velocity. The main difference between the solution proposed in this 
paper and the solution proposed in (Pauca et al., 2019) is related to the 
introduction of the trajectory planner in the control architecture, while in (Pauca 
et al., 2019) the trajectory is considered known beforehand. 

 
2. Longitudinal Dynamics Model 

 
To model the dynamics of a vehicle, it is considered that the motion of 

the vehicle is in a coordinate system denoted as xOyz. The movement along the 
x axis is called longitudinal movement, while the movement along the y axis is 
called lateral movement, and the rotation around the z axis is represented by the 
variation of the yaw angle. 

The model of the longitudinal dynamics describes how the position of 
the vehicle along the x axis varies in time. Thus, the linear model for the 
longitudinal motion is represented by (Ulsoy et al., 2012): 

 
1 ( )x

x x x x
x x

Kp p u w
T T

= − + +                                (1) 
 

0( )x
d x w
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AC p vρ
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                             (2) 
 

0

1
( )x
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K

AC p vρ
=

−
                             (3) 

 

0 0( sin cos )x x xw mg mgµ ϕ µ ϕ ϕ= −                        (4) 
 

where xp  is the longitudinal position, xp  represents the longitudinal velocity, 

xp  represents the longitudinal acceleration of the vehicle, xT represents the time 
constant, xK  represents the gain factor, xw models the disturbance, wv  
represents the velocity of the wind and xu is the longitudinal force, g represents 
the gravitational acceleration, ϕ is the road slope, ρ is the air density, dC  
represents the drag coefficient, xµ  is the rolling resistance coefficient, m is the 
mass of the vehicle, and A  is the vehicle frontal area. For controller design 
purposes, the linearization was performed considering a nominal operation point 
with 0x xp p=   and 0ϕ ϕ= . 
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To obtain zero tracking error between the vehicle velocity and the 
imposed reference, an integrator was added in the model as: 

 

xp x ref xv pχ −= −                      (5) 
 

This model will be used in the design phase of the longitudinal 
controller described in Section 5. 

 
3. Lateral Dynamics Model 

 
The lateral dynamics model of a vehicle describes how the position of 

the vehicle along the y axis changes when the steering angle of the tires is 
varied. The nonlinear bicycle model is represented by (Rajamani, 2006):  

 

1 2

2 2

2 2

yf yr

yf yr

y x p p

p p

mp mp F F

I F F

θ

θ

= − + +

= −
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  
                           (6) 

 

where yp is the lateral position, yp  represents the lateral velocity, yp  

represents the lateral acceleration, θ is the yaw angle, 1  and 2  represent the 
distances from the center of gravity of the vehicle to the front and rear axles, 
respectively, 

yfpF  and 
yrpF  represent the lateral front and rear forces that 

depend on the front and rear steering angles, and I is the rotational inertia of the 
vehicle.  

A linear bicycle model is obtained from Eq. (6) considering the 
following assumptions: 

⎩
⎨

⎧
𝛼𝛼𝑟𝑟 = 0

𝛼𝛼𝑓𝑓 ≤ 0.174 [𝑟𝑟𝑟𝑟𝑟𝑟]
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                              (7) 

 

where rα  and fα  are the rear and front tire steering angles. 
Applying the conditions from Eq. (7) for Eq. (6), a linear bicycle model 

is obtained (Rajamani, 2006):  
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where 1C  and 2C  are the cornering stiffness coefficients of the front and rear 
tires, respectively.  

Also, for reference-tracking purposes, an integrator is added in this 
model as: 

yp r yy pχ = −                     (9) 
 
where ry  represents the lateral target position. 

 
4. Trajectory Planning 

 
In this section, a solution for trajectory planning that generates an 

obstacle-free path for a vehicle is presented. The trajectory planner uses a 
simple model for the lateral and longitudinal dynamics of the vehicle to predict 
the future position: 

pl y

pl x

x

y a

x p

p constant

=


=
 =



 



                  (10) 

 

where ply represents the position of the point model along the y axis and ya  

represents its lateral acceleration. Because this model neglects the dimension of 
the vehicle, the obstacle will be included in a parametrizable ellipse. The 
dimensions and center of the ellipse are chosen according to the center and 
dimension of the obstacle, but also to generate a smooth obstacle-free path. To 
obtain this path, at each sample time _s plT , a cost function must be minimized, 

(Gao, 2014): 
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over ya  , subject to the constraints: 
 

min max 1( ) , 1,ply y k i y i N≤ + ≤ =               (12) 
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where yβ , 
yaβ , oβ  represent tuning parameters, δ  has a small value, yref  is 

the lateral target position, 1N  is the prediction horizon, miny , maxy  represent the 
minimum and the maximum values allowed for the lateral position and ( )k∆
represents the distance between the vehicle and the obstacle that is computed 
with the relation: 
 

( ) 0, 1 0

( ) ,

k i if c

k i d otherwise

∆ + = − ≤

∆ + =

                                    (13) 

 
where  
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in which [ cex , cey ] represents the centre of the ellipse, L and h represent the 
parameters of the ellipse, [ plx , ply ] represents the position of the vehicle 

modelled by point model and [ ex , ey ] represents the closest point from the 
ellipse to the vehicle. 

By minimizing the cost function given in Eq. (11), the optimal control 
command sequence yields as * * *

1[ ( ), ( 1),..., ( )]y y ya k a k a k N+ + , but only its first 
component is applied to the vehicle according to the receding horizon principle.  
The obstacle-free path is generated between the last future position and the 
present future position through which the vehicle should pass. 

If the points * *
1 1[ , ]x yp p and * *

2 2[ , ]x yp p  are the target position of the 
vehicle at the last sample time and the one for the present time, then the 
obstacle-free path, 1 2[ , , ..., ]T

free NP p p p= , [ , ]i xi yip p p= , 1,i N= , is 
obtained using: 

*
1

* *
2 1*
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y y
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p p
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                         (15) 

 

where sT  represents the sample time used for the longitudinal and lateral 
controllers, with /s pl sN T T−= . Note that, the longitudinal velocity of the 

vehicle, i.e., 
.

xp , is considered constant, while computing the planned trajectory.  
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5. Predictive Control 
 

Since the control architecture uses model predictive control (MPC) 
algorithms for the lateral and longitudinal dynamics, in this section, the MPC 
design methodology is briefly described. 

The main advantage of the MPC strategy concerns the implicit handling 
of constraints imposed for inputs, states and outputs directly in the optimization 
problem. The model of the system can by described as: 

 

( 1) ( ) ( )
( ) ( )

k A k Bu k
z k C k

ζ ζ
ζ

+ = +
 =

                     (16) 

 

where z represents the output of the system, ζ represents the state vector, u 
represents the input, the pair (A, B) is considered controllable and the pair (C, A) 
is considered detectable. 

Knowing the initial state 0 ( )kζ ζ= , the MPC algorithm consists in 

determining a finite horizon input sequence 0 1[ ,..., ]
MPC

T
NU u u −= that minimizes 

the finite horizon cost function given by: 
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where MPCN  is the prediction horizon, 0P and 0Q  are the weight matrices 
for the states of the system, 0R   is the weight of the control command, jζ  is 

the prediction of ( ),k jζ +  1, MPCj N= . Note that, the prediction horizon and 
the weight matrices influence the performances of the resulting closed-loop 
control system.  

The matrix forms of the predictor and the cost function yield as: 
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size(Θ ) =[𝑐𝑐�𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 ,𝑐𝑐�𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀], size(Ψ )=𝑚𝑚�𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚�𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀], 
𝑚𝑚�  is the number of inputs and 𝑐𝑐� is the number of states. 

The constraints imposed for the inputs and outputs, min maxju u u≤ ≤ , 

min maxjz z z≤ ≤ , can be written using the following relation: 
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outputs. 
Now, to find the optimal control sequence, the following problem has to 

be solved: 
1min
2

T T

U
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σ ζ
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with: 
2( ) 0, ( 0 0)
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G and
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J ε
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

= ϒ ΘΛ
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                               (21) 

 
6. Experimental Results 

 
The proposed control architecture, which is illustrated in Fig. 1, is 

composed of:  
i) a longitudinal predictive controller that regulates the longitudinal 

velocity of the vehicle varying the traction force; 
ii) a trajectory planner that generates an obstacle-free path for the 

vehicle in order to maintain it on the road and to avoid all the fixed obstacles 
encountered on the way; 

iii) a trajectory follower, i.e., a lateral predictive controller, that 
commands the steering angle of the front tire for the vehicle to follow the 
generated obstacle-free path. 
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The longitudinal predictive controller uses the model for the 
longitudinal dynamics given by Eqs. (1 - 4) and the integrator in Eq. (5). The 
constraint imposed for the input, i.e., the longitudinal traction force, is 
expressed as min max .x x xu u u− −≤ < The controller computes the optimal command 
that minimizes the cost function in Eq. (17) and satisfies the imposed 
constraints, using the following control parameters determined heuristically:  

 

3 375 , 75 , 0.00023529, 10.
longlong long long MPCP I Q I R N= = = =    

 

The lateral predictive controller uses the model for the lateral dynamics 
of the vehicle given by Eq. (8) and the integrator in Eq. (9). The reference of the 
lateral position is computed by the trajectory planner, which finds it as an 
obstacle-free path for the vehicle. The controller has as output the steering angle 
of the front tire, which is constrained by min maxf f fα α α− −≤ < . The heuristically 
determined parameters of the trajectory planner are: 

 

11.5, 0.001, 0.85, 12 [ ], 1.5 [ ], 10.
yy a o L m h m Nβ β β= = = = = =  

 

The parameters of the lateral controller were selected as: 
 

5 58 , 8 , 0.02, 10.
latlat lat lat MPCP I Q I R N= = = =  

 

 
 

Fig. 1 – Control architecture of the automated vehicle. 
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Table 1 
Vehicle Parameters 

 Name Value 

𝑚𝑚 Vehicle mass 1094 [Kg] 

𝐶𝐶1 Front tire cornering stiffness coefficient 63291 [N·rad-1] 
𝐶𝐶2 Rear tire cornering stiffness coefficient 50041 [N·rad-1] 

1  Longitudinal distance from the center of gravity 
to the front tires 1.108 [m] 

2  Longitudinal distance from the center of gravity 
to the rear tires 1.392 [m] 

I Vehicle’s rotational inertia 1608 [kg. m2] 

minfα −  Minimum value of front wheel steering angle / 4π−  [rad] 

maxfα −  Maximum value of front wheel steering angle / 4π  [rad] 
g  The gravitational acceleration 9.81 [m·s-2] 

.

0xp  The initial velocity of the vehicle 0 [m·s-1] 
ϕ  The road slope 0 [rad] 

0ϕ  The initial road slope 0 [rad] 
ρ  The air density 1.202 [Kg·m-3] 
A  The vehicle frontal area 1.5 [m-2] 

dC  The drag coefficient 0.5 

xµ  The rolling resistance 0.0015 

wv  The wind speed 2 [m·s-1] 

minxu −  Minimum value of the longitudinal traction 
force 0 [N] 

maxxu −  Maximum value of the longitudinal traction 
force 2000 [N] 

miny  Minimum value of the lateral position 0 [m]  

maxy  Minimum value of the lateral position 4.5 [m]  
 

The sampling periods of the lateral and longitudinal dynamics used for 
simulations are equal to 0.01sT s=  and the sample time used by the trajectory 
planner is 0.1s plT s

−
= . To simulate the dynamics of the vehicle, the nonlinear 

bicycle model from Eq. (6) is used. The parameters of the vehicle are presented 
in Table 1.  

From Fig. 2 it can be noticed that the longitudinal velocity of the 
vehicle follows the desired reference, and from Fig. 3 it can be observed that the 
input, i.e., longitudinal traction force, satisfies the imposed constraints. The 
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steady – state error of the longitudinal velocity illustrated in Fig. 4 has small 
values which suggests that the controller has goods performances. 

 
Fig. 2 – Longitudinal velocity. 

 
Fig. 3 – Longitudinal traction force (continuous line) and constraint limits (dashed). 

 
Fig. 4 ‒ Longitudinal velocity error. 
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Also, from Fig. 2 it can be seen that the velocity reaches a constant 
value, 18.33 [ ]xp m s−= ⋅ , and from this moment the trajectory planner is active. 
It starts to plan the trajectory for the vehicle and the lateral controller starts to 
follow it.  

In Fig. 5, the obstacle-free path obtained by the trajectory planner is 
illustrated with a dot-dashed line, and it can be observed that the path avoids the 
collision with the fixed obstacle and then returns on the initial lane. The 
reference position for the trajectory planner was set as ( ) 0yref k = . Note that the 
road has two lanes with the same direction for movement. Also, in Fig. 5, the 
trajectory of the vehicle is presented with continuous line, and the lateral error is 
illustrated in Fig. 6. The lateral controller commands the steering angle of the 
front tire, represented in Fig. 7, for the vehicle to follow the trajectory generated 
by the planner and it can be noticed that the obtained trajectory does not have 
oscillations which could affect the comfort of the passengers. Moreover, the 
control command satisfies the imposed constraints. 

 

 
Fig. 5 ‒ Obstacle avoidance use-case. 

 

 
Fig. 6 ‒ Lateral error. 
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Fig. 7 ‒ Steering angle of the front tire (continuous line) and constraint limits (dashed). 

 
7. Conclusion 

 
In this paper, a control architecture for an automated vehicle was 

proposed. This is composed of a longitudinal predictive controller that controls 
the velocity of the vehicle, a trajectory planner with the task of obtaining an 
obstacle-free path for the vehicle and a lateral predictive controller that 
commands the steering angle of the vehicle to follow the output of the trajectory 
planner. The results obtained in simulation illustrate the performances of the 
proposed architecture. Future work will focus to improve the trajectory planner 
and the lateral controller to handle moving obstacles. 
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ARHITECTURĂ DE CONTROL PENTRU VEHICULELE AUTOMATE CARE 
ASIGURĂ EVITAREA OBSTACOLELOR 

 
(Rezumat) 

 
Ideea de vehicul automat este de mare interes atât pentru cercetătorii din 

mediul academic, cât și pentru cei din mediul industrial. Vehiculele inteligente 
contribuie la îmbunătățirea siguranței participanților la trafic, reducerea costurilor și a 
duratei călătoriilor, îmbunătățirea confortului pentru șofer și pasageri, reducerea 
ambuteiajelor din trafic și maximizarea fluxului de vehicule prin menținerea unei 
distanțe de siguranță minime între vehicule. Un vehicul automat trebuie să își poată 
detecta vecinii și obstacolele de pe carosabil, cu scopul de a-și planifica și urmări 
traiectoria astfel rezultată. Pornind de la aceste ipoteze, lucrarea de față propune o 
arhitectură de control pentru un vehicul automat care încorporează un planificator de 
traiectorie și un urmăritor de traiectorie pentru dinamica laterală a vehiculului și un 
regulator predictiv pentru dinamica longitudinală a acestuia. Scopul soluției propuse 
este de a planifica și urmări o traiectorie, atât pentru dinamica laterală, cât și pentru cea 
longitudinală, astfel încât să fie evitate posibilele coliziuni cu obstacolele fixe aflate pe 
carosabil. Planificatorul de traiectorie are rolul de a menține vehiculul pe mijlocul 
drumului până în momentul în care senzorii acestuia detectează un obstacol. În acest 
caz, planificatorul de traiectorie generează o traiectorie pentru vehicul pentru a fi evitată 
o posibilă coliziune cu acel obstacol fix. Urmăritorul de traiectorie este reprezentat de 
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un regulator predictiv pentru dinamica laterală, care este proiectat cu scopul de a 
controla unghiul de direcție al vehiculului astfel încât acesta să urmărească traiectoria 
generată de planificatorul de traiectorie. Regulatorul pentru dinamica laterală utilizează 
un model liniar de tip bicicletă pentru a prezice stările vehiculului cu scopul de a calcula 
mărimea de comandă. Regulatorul longitudinal propus are rolul de a controla viteza 
longitudinală a vehiculului. Ambele regulatoare sunt definite ca probleme de optimizare 
cu restricții impuse pentru poziția laterală a vehiculului, unghiul de direcție al roții din 
față și pentru forța de tracțiune longitudinală, care reprezintă mărimea de ieșire a 
regulatorului longitudinal. Rezultatele obținute arată că planificatorul reușește să 
genereze o traiectorie fără obstacole pentru vehiculul automat, iar urmăritorul de 
traiectorie controlează vehiculul astfel încât să fie urmărită traiectoria generată. De 
asemenea, regulatorul longitudinal asigură menținerea de către vehicul a vitezei de 
referință impuse.  
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