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Abstract. The automated vehicle concept is of great interest nowadays for
researchers in both academia and industry. These intelligent vehicles can
contribute to increase people’s safety, reduce travel cost and travel time, improve
the comfort of the driver, reduce traffic jams, and maximize the traffic flow by
maintaining a minimal safety gap between vehicles. Taking these into account,
this paper proposes a control architecture for an automated vehicle that
incorporates a trajectory planner and a trajectory follower for the lateral
dynamics and a predictive controller for the longitudinal dynamics. The aim of
the proposed solution is twofold: i) to plan and follow a path, both in the
longitudinal and lateral directions and ii) to avoid possible collisions with fixed
obstacles on the road. The obtained results illustrate that the trajectory planner
succeeds to compute an obstacle free path for the automated vehicle, and the
trajectory follower controls the vehicle to track the generated path.
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1. Introduction

The researchers from academia and industry showed a great interest in
automated vehicles, which lead to the development of advanced functionalities
like adaptive cruise control, lane keeping, emergency braking. All of these have
the purpose to ensure people’s safeness by maintaining a safety distance
between vehicles and avoiding collisions, aiming at the same time at improving
driving comfort and reducing the travel costs. An automated vehicle must be
able to detect its neighbour vehicles and the obstacles along the road, to plan its
trajectory and to follow it. In literature there are many studies which offer
solutions for automated vehicles. In (Keviczky et al., 2006; Jiang and Astolfi,
2018; Lin et al., 2019; Attia et al., 2014; Falcone et al., 2008) the authors
propose algorithms to control the motion of vehicles along both longitudinal
and lateral directions. These solutions ensure that the vehicle will follow the
required path and velocity but, to obtain these, in literature different
methodologies are proposed. In (Alirezaei et al., 2016), the authors introduced
an obstacle avoidance strategy for a vehicle platoon. The aim of the solution is
to avoid the collision between vehicles when a vehicle wants to merge with the
platoon. A solution designed to prevent the collisions between a platoon of
vehicles and pedestrians is described in (Ferrara and Vecchio, 2007). A
methodology based on a multi-agent system with the task of controlling a
platoon to avoid obstacles is proposed in (Gechter et al., 2011). In (Quirynen et
al., 2020), the authors present a hierarchical solution based on nonlinear model
predictive control (NMPC) for a vehicle to avoid obstacles. In (Rios-Torres and
Malikopoulos, 2017, a velocity planning method for the vehicles that want to
merge on motorway is introduced. In (Pauca et al., 2019), a solution for the
longitudinal and lateral control of an automated vehicle is proposed without
considering any obstacles that might appear on their path.

This paper proposes a control architecture with the tasks to plan and
follow a safe trajectory that maintains the vehicle on the road and avoids
collisions with fixed obstacles encountered along the way. The architecture also
includes a longitudinal velocity controller which ensures that the vehicle is
moving with the desired velocity. The trajectory planner has the task of
maintaining the vehicle on the middle of the lane until the sensors of the vehicle
detect an obstacle. When this situation occurs, the trajectory planner generates a
trajectory for the vehicle to avoid a possible collision with the fixed obstacle.
The trajectory follower is represented by a lateral predictive controller with the
task of controlling the steering angle of the vehicle, so that that the vehicle
follows the path generated by the trajectory planner. This lateral controller uses
a linear bicycle model to predict the states of the vehicle, in order to compute
the control law. Moreover, a longitudinal controller is proposed with the task of
controlling the longitudinal velocity of the vehicle. Both controllers are
formulated as optimization problems with constraints imposed on the lateral
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position of the vehicle, steering angle of the front tire for the bicycle model and
on the longitudinal traction force, which represents the output of the
longitudinal controller. The obtained simulation results illustrate that the
trajectory of the vehicle was properly adapted to avoid the collision with a fixed
obstacle. Also, the longitudinal controller ensures that the vehicle maintains the
imposed velocity. The main difference between the solution proposed in this
paper and the solution proposed in (Pauca et al., 2019) is related to the
introduction of the trajectory planner in the control architecture, while in (Pauca
et al., 2019) the trajectory is considered known beforehand.

2. Longitudinal Dynamics Model

To model the dynamics of a vehicle, it is considered that the motion of
the vehicle is in a coordinate system denoted as xOyz. The movement along the
x axis is called longitudinal movement, while the movement along the y axis is
called lateral movement, and the rotation around the z axis is represented by the
variation of the yaw angle.

The model of the longitudinal dynamics describes how the position of
the vehicle along the x axis varies in time. Thus, the linear model for the
longitudinal motion is represented by (Ulsoy et al., 2012):

1 K
p, =——p, +=—=(U, +W 1
pX TXpX+-I-X(X+ X) ()
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pACd(pr _VW)
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where p, is the longitudinal position, p, represents the longitudinal velocity,
p, represents the longitudinal acceleration of the vehicle, T, represents the time
constant, K, represents the gain factor, w, models the disturbance, v,,
represents the velocity of the wind and u, is the longitudinal force, g represents
the gravitational acceleration, ¢ is the road slope, p is the air density, C,
represents the drag coefficient, x, is the rolling resistance coefficient, m is the

mass of the vehicle, and A is the vehicle frontal area. For controller design
purposes, the linearization was performed considering a nominal operation point

with p, = p,, and ¢ =g,
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To obtain zero tracking error between the vehicle velocity and the
imposed reference, an integrator was added in the model as:
j(p =Vyret — Py 5)

X

This model will be used in the design phase of the longitudinal
controller described in Section 5.

3. Lateral Dynamics Model

The lateral dynamics model of a vehicle describes how the position of
the vehicle along the y axis changes when the steering angle of the tires is
varied. The nonlinear bicycle model is represented by (Rajamani, 2006):

mp, = —mp, 0 + 2F, +2F,
. (6)
10 =20,F, —20,F

py‘f 2 pyr

where p, is the lateral position, p, represents the lateral velocity, P,

represents the lateral acceleration, ¢is the yaw angle, 7, and 7, represent the
distances from the center of gravity of the vehicle to the front and rear axles,

respectively, pr and prr represent the lateral front and rear forces that

depend on the front and rear steering angles, and I is the rotational inertia of the
vehicle.

A linear bicycle model is obtained from Eq. (6) considering the
following assumptions:

( a-=0
ar < 0.174 [rad] @)

i Py < Px
D, = const

where o, and « ; are the rear and front tire steering angles.

Applying the conditions from Eq. (7) for Eq. (6), a linear bicycle model
is obtained (Rajamani, 2006):
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where ¢, and c, are the cornering stiffness coefficients of the front and rear

tires, respectively.
Also, for reference-tracking purposes, an integrator is added in this
model as:

j(py =Y, - py (9)

where Yy, represents the lateral target position.

4. Trajectory Planning

In this section, a solution for trajectory planning that generates an
obstacle-free path for a vehicle is presented. The trajectory planner uses a
simple model for the lateral and longitudinal dynamics of the vehicle to predict
the future position:

ypl :ay
Xo = Dy (10)
p, = constant

where Y, represents the position of the point model along the y axis and a,

represents its lateral acceleration. Because this model neglects the dimension of
the vehicle, the obstacle will be included in a parametrizable ellipse. The
dimensions and center of the ellipse are chosen according to the center and
dimension of the obstacle, but also to generate a smooth obstacle-free path. To

obtain this path, at each sample time T,
(Gao, 2014):

pl » @ Cost function must be minimized,

Ny
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(11)

BBy (k +1)

/;’ay(ay(k+i)—ay(k+i—1))2+A(k+i)+§

over a, , subject to the constraints:

min < Yo (K+1) < Yoy 121N, (12)
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where ,By, ,Bay, B, represent tuning parameters, § has a small value, refy is

the lateral target position, N, is the prediction horizon, Y., Ymx represent the
minimum and the maximum values allowed for the lateral position and A(k)

represents the distance between the vehicle and the obstacle that is computed
with the relation:

{A(k+i)=0,if c-1<0
(13)

A(k +i)=d, otherwise

where

_ (Xpl (k+i)_xce)2 (ypl(k+i)_yce)2
c= +
L2 h? (14)
d = O (K1) = )7 + (Y (K +1) - ¥,)?

in which [Xx,, Y. ] represents the centre of the ellipse, L and h represent the
parameters of the ellipse, [ X, , Y, ] represents the position of the vehicle

modelled by point model and [X,, Yy, ] represents the closest point from the

ellipse to the vehicle.
By minimizing the cost function given in Eq. (11), the optimal control

command sequence Yields as [a;(k),a;(k +1),...,a; (k+N,)], but only its first

component is applied to the vehicle according to the receding horizon principle.
The obstacle-free path is generated between the last future position and the
present future position through which the vehicle should pass.

If the points [py,, Pyy]and [py,, Py,] are the target position of the
vehicle at the last sample time and the one for the present time, then the
obstacle-free path, P, =[P, P, - Py P =[P4 Pyl, i=LN , is
obtained using:

P, (K) = Py +ip, T,

.(p;z_ p;l) .

* (15)
pyi(k):py1+| N I=1LN

where T, represents the sample time used for the longitudinal and lateral
controllers, with N =T, /T, . Note that, the longitudinal velocity of the

vehicle, i.e., bx , Is considered constant, while computing the planned trajectory.
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5. Predictive Control

Since the control architecture uses model predictive control (MPC)
algorithms for the lateral and longitudinal dynamics, in this section, the MPC
design methodology is briefly described.

The main advantage of the MPC strategy concerns the implicit handling
of constraints imposed for inputs, states and outputs directly in the optimization
problem. The model of the system can by described as:

{g(k +1) = AZ (k) + Bu(k)
2(k)=C¢ (k)

where z represents the output of the system, { represents the state vector, u

represents the input, the pair (A, B) is considered controllable and the pair (C, A)
is considered detectable.

Knowing the initial state {, =¢'(k), the MPC algorithm consists in

(16)

determining a finite horizon input sequence U =[u,...,u NMPC,l]T that minimizes
the finite horizon cost function given by:

Nypc -1

IGU) =&, Py, + 2, (£]Q¢;+UjRu)) (17)

i=0

where N,,oc is the prediction horizon, P>0and Q>0 are the weight matrices
for the states of the system, R > 0 is the weight of the control command, g“j is

the prediction of £(k + j), J=1 Nypc . Note that, the prediction horizon and

the weight matrices influence the performances of the resulting closed-loop
control system.
The matrix forms of the predictor and the cost function yield as:

7=\, +YU

J(¢U)=¢4,Q8, +7' @ +UTYU (18)

where: 7 =&y, &y, 17 A=[A... A%]" ©=diag{Q,...Q,P}

AB B - 0
Y= : , . .|, ¥=diag{R,..,R},

ANMPC_lB ANMPC_ZB ... B
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size(® ) =[iNypc, iNmpc], Size(¥ )=MiNypciNypc],
m is the number of inputs and 71 is the number of states.
The constraints imposed for the inputs and outputs, Up, <u; <u

min = max ?
Zmin < Zj < I, , CAN be written using the following relation:
I, +Kg+sU <o (19)
where:
0O --- 0 E_o 0
T 1 0 :
FZ[MOOO] ’ K = . y E = O NMPC71 ]
0 Nyipc ° °

M, =[00-C-C] , E=[1-100]" c=[b,..0,T , b =[-U i U —Zrin Zr] >

i=0,Nyec =1, M; € Rizms2p)xa» Ei € Ramszp)x1, P IS the number of the
outputs.
Now, to find the optimal control sequence, the following problem has to
be solved:
min1uTGU +UTF¢
v 2 (20)
JU<o+W(¢
with:
G=2(¥+Y'OY) >0, (©~=0and ¥ >~0)
F=2r"0A (21)
J=KY+¢

6. Experimental Results

The proposed control architecture, which is illustrated in Fig. 1, is
composed of:

i) a longitudinal predictive controller that regulates the longitudinal
velocity of the vehicle varying the traction force;

i) a trajectory planner that generates an obstacle-free path for the
vehicle in order to maintain it on the road and to avoid all the fixed obstacles
encountered on the way;

iii) a trajectory follower, i.e., a lateral predictive controller, that
commands the steering angle of the front tire for the vehicle to follow the
generated obstacle-free path.
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The longitudinal predictive controller uses the model for the
longitudinal dynamics given by Egs. (1 - 4) and the integrator in Eq. (5). The
constraint imposed for the input, i.e., the longitudinal traction force, is
expressed as u, ., <u, <u, .. The controller computes the optimal command

that minimizes the cost function in Eq. (17) and satisfies the imposed
constraints, using the following control parameters determined heuristically:

Png = 7513, Qg =751, Ry =0.00023529, Ny, =10,

ong —

The lateral predictive controller uses the model for the lateral dynamics
of the vehicle given by Eqg. (8) and the integrator in Eq. (9). The reference of the
lateral position is computed by the trajectory planner, which finds it as an
obstacle-free path for the vehicle. The controller has as output the steering angle
of the front tire, which is constrained by «; ., <a; <a, ., - The heuristically

determined parameters of the trajectory planner are:

B, =15, B, =0.00L B, =085 L=12 [m], h=15 [m], N, =10.

The parameters of the lateral controller were selected as:

=10.

Pa =85, Qo =815, R

lat = 0.02, NMPC,at

[Longitudinal velocity, L itudinal position]

Predictive
Longitudinal
Controller

[Lateral position, Lateral velocity, Yaw angle, Yaw angle rate]
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Lateral
Controller
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m Lateral
Controller

uoipsod
[eloge]
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Fig. 1 — Control architecture of the automated vehicle.
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Table 1
Vehicle Parameters
Name Value
m Vehicle mass 1094 [Kg]
C, Front tire cornering stiffness coefficient 63291 [N-rad ]
C, Rear tire cornering stiffness coefficient 50041 [N-rad"]
/ Longitudinal distance from the center of gravity 1,108 [m]
! to the front tires '
/ Longitudinal distance from the center of gravity 1392 [m]

2 to the rear tires '

I Vehicle’s rotational inertia 1608 [kg. m?]
X5 _min Minimum value of front wheel steering angle -z 14 [rad]
At Maximum value of front wheel steering angle 714 [rad]

g The gravitational acceleration 9.81 [m-s?]

P The initial velocity of the vehicle 0 [m-s?]

4 The road slope 0 [rad]

2 The initial road slope 0 [rad]

4 The air density 1.202 [Kg-m~]

A The vehicle frontal area 1.5 [m?]

Cq The drag coefficient 0.5
My The rolling resistance 0.0015
v, The wind speed 2 [m-s
Minimum value of the longitudinal traction
u><—min 0 [N]
force
u_ Maximum value of the longitudinal traction 2000 [N]
force
Yinin Minimum value of the lateral position 0[m]
Yinax Minimum value of the lateral position 4.5[m]

The sampling periods of the lateral and longitudinal dynamics used for
simulations are equal to T, =0.01s and the sample time used by the trajectory

planner is T , =0.1s. To simulate the dynamics of the vehicle, the nonlinear

bicycle model from Eq. (6) is used. The parameters of the vehicle are presented
in Table 1.

From Fig. 2 it can be noticed that the longitudinal velocity of the
vehicle follows the desired reference, and from Fig. 3 it can be observed that the
input, i.e., longitudinal traction force, satisfies the imposed constraints. The
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steady — state error of the longitudinal velocity illustrated in Fig. 4 has small
values which suggests that the controller has goods performances.
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Fig. 2 — Longitudinal velocity.
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Fig. 3 — Longitudinal traction force (continuous line) and constraint limits (dashed).
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Fig. 4 — Longitudinal velocity error.
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Also, from Fig. 2 it can be seen that the velocity reaches a constant
value, p =833 [m-s'], and from this moment the trajectory planner is active.
It starts to plan the trajectory for the vehicle and the lateral controller starts to
follow it.

In Fig. 5, the obstacle-free path obtained by the trajectory planner is
illustrated with a dot-dashed line, and it can be observed that the path avoids the
collision with the fixed obstacle and then returns on the initial lane. The
reference position for the trajectory planner was set as ref, (k) =0. Note that the

road has two lanes with the same direction for movement. Also, in Fig. 5, the
trajectory of the vehicle is presented with continuous line, and the lateral error is
illustrated in Fig. 6. The lateral controller commands the steering angle of the
front tire, represented in Fig. 7, for the vehicle to follow the trajectory generated
by the planner and it can be noticed that the obtained trajectory does not have
oscillations which could affect the comfort of the passengers. Moreover, the
control command satisfies the imposed constraints.

y [m]
o

\
l \
|
|
|
1
|
|
|

130 140 150 160 170 180 190 200

X [m]

Fig. 5 — Obstacle avoidance use-case.
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Fig. 7 — Steering angle of the front tire (continuous line) and constraint limits (dashed).
7. Conclusion

In this paper, a control architecture for an automated vehicle was
proposed. This is composed of a longitudinal predictive controller that controls
the velocity of the vehicle, a trajectory planner with the task of obtaining an
obstacle-free path for the vehicle and a lateral predictive controller that
commands the steering angle of the vehicle to follow the output of the trajectory
planner. The results obtained in simulation illustrate the performances of the
proposed architecture. Future work will focus to improve the trajectory planner
and the lateral controller to handle moving obstacles.

REFERENCES

Alirezaei M., Semsar-Kazerooni E., Ploeg J., Obstacle Avoidance Control Design: An
Experimental Evaluation in Vehicle Platooning, in 13" International
Symposium on Advanced Vehicle Control, Munich, Germany, 2016, 119-124.

Attia R., Orjuela R., Basset M., Combined Longitudinal and Lateral Control for
Automated Vehicle Guidance, Vehicle System Dynamics, 52, 2, 2014, 261-279.

Falcone P. et al., Low Complexity MPC Schemes for Integrated Vehicle Dynamics
Control Problems, in 9" International Symposium on Advanced Vehicle
Control (2008).

Ferrara A., Vecchio C., Collision Avoidance Strategies and Coordinated Control of
Passenger Vehicles, Nonlinear Dynamics, 49, 2007, 475-492.

Gao Y., Model Predictive Control for Autonomous and Semiautonomous Vehicles,
Ph.D. Dissertation, UC Berkeley, 2014.

Gechter F., Contet J., Gruer P., Koukam A., A Reactive Agent-Based Vehicle Platoon
Algorithm with Integrated Obstacle Avoidance Ability, in IEEE 5"



82 Ovidiu Pauca et al.

International Conference on Self-Adaptive and Self-Organizing Systems, 2011,
129-137.

Jiang J., Astolfi A., Lateral Control of an Autonomous Vehicle, IEEE Transactions on
Intelligent Vehicles, 3, 2, June 2018, 228-237.

Keviczky T., Falcone P., Borrelli F., Asgari J., Hrovat D., Predictive Control Approach
to Autonomous Vehicle Steering, in American Control Conference,
Minneapolis, USA, June 2006, 4670-4675.

Lin F., Zhang Y., Zhao Y., Yin G., Zhang H., Wang K., Trajectory Tracking of
Autonomous Vehicles with the Fusion of DYC and Longitudinal-Lateral
Control, Chinese Journal of Mechanical Engineering, February 2019.

Pauca O., Caruntu C.F., Lazar C., Predictive Control for the Lateral and Longitudinal
Dynamics in Automated Vehicles, 23 International Conference on System
Theory, Control and Computing, Sinaia, Romania, 2019, 797-802.

Quirynen R., Berntorp K., Kambam K., Di Cairano S., Integrated Obstacle Detection
and Avoidance in Motion Planning and Predictive Control of Autonomous
Vehicles, American Control Conference, July 2020.

Rajamani R., Vehicle Dynamics and Control, Springer, USA, 2006.

Rios-Torres J., Malikopoulos A.A., Automated and Cooperative Vehicle Merging at
Highway On-Ramps, IEEE Transactions on Intelligent Transportation Systems,
18, 4, April 2017, 780-789.

Ulsoy A.G., Peng H., Cakmakc M., Automotive Control Systems, Cambridge University
Press, USA, 2012.

ARHITECTURA DE CONTROL PENTRU VEHICULELE AUTOMATE CARE
ASIGURA EVITAREA OBSTACOLELOR

(Rezumat)

Ideea de vehicul automat este de mare interes atdt pentru cercetatorii din
mediul academic, cét si pentru cei din mediul industrial. Vehiculele inteligente
contribuie la imbunatatirea sigurantei participantilor la trafic, reducerea costurilor si a
duratei calatoriilor, imbunatitirea confortului pentru sofer si pasageri, reducerea
ambuteiajelor din trafic si maximizarea fluxului de vehicule prin mentinerea unei
distante de sigurantd minime Tntre vehicule. Un vehicul automat trebuie sa isi poata
detecta vecinii si obstacolele de pe carosabil, cu scopul de a-si planifica si urmari
traiectoria astfel rezultata. Pornind de la aceste ipoteze, lucrarea de fatd propune o
arhitectura de control pentru un vehicul automat care incorporeaza un planificator de
traiectorie si un urmaritor de traiectorie pentru dinamica laterala a vehiculului si un
regulator predictiv pentru dinamica longitudinala a acestuia. Scopul solutiei propuse
este de a planifica si urmari o traiectorie, atat pentru dinamica laterala, cat si pentru cea
longitudinala, astfel Tncat sa fie evitate posibilele coliziuni cu obstacolele fixe aflate pe
carosabil. Planificatorul de traiectorie are rolul de a mentine vehiculul pe mijlocul
drumului pana in momentul in care senzorii acestuia detecteaza un obstacol. Tn acest
caz, planificatorul de traiectorie genereaza o traiectorie pentru vehicul pentru a fi evitata
o0 posibila coliziune cu acel obstacol fix. Urmaritorul de traiectorie este reprezentat de
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un regulator predictiv pentru dinamica laterala, care este proiectat cu scopul de a
controla unghiul de directie al vehiculului astfel Tncat acesta sa urmareasca traiectoria
generata de planificatorul de traiectorie. Regulatorul pentru dinamica laterala utilizeaza
un model liniar de tip bicicleta pentru a prezice starile vehiculului cu scopul de a calcula
marimea de comanda. Regulatorul longitudinal propus are rolul de a controla viteza
longitudinala a vehiculului. Ambele regulatoare sunt definite ca probleme de optimizare
cu restrictii impuse pentru pozitia laterala a vehiculului, unghiul de directie al rotii din
fata si pentru forta de tractiune longitudinala, care reprezinta marimea de iesire a
regulatorului longitudinal. Rezultatele obtinute arata ca planificatorul reuseste si
genereze o traiectorie fara obstacole pentru vehiculul automat, iar urmaritorul de
traiectorie controleaza vehiculul astfel incat sa fie urmarita traiectoria generata. De
asemenea, regulatorul longitudinal asigura mentinerea de catre vehicul a vitezei de
referinta impuse.
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