BULETINUL INSTITUTULUI POLITEHNIC DIN IAȘI Publicat de Universitatea Tehnică "Gheorghe Asachi" din Iași Volumul 66 (70), Numărul 4, 2020 Secția ELECTROTEHNICĂ. ENERGETICĂ. ELECTRONICĂ

AUTOMATED METHOD FOR SEARCHING OPTIMAL SOLUTION IN STREET LIGHTING DESIGN

 $\mathbf{B}\mathbf{Y}$

ALEXANDRU VIOREL RUSU^{1,*} and GHEORGHE LIVIN[†]

"Gheorghe Asachi" Technical University of Iași Faculty of Electrical Engineering

Received: October 12, 2020 Accepted for publication: December 22, 2020

Abstract. This paper presents an automated method for street lighting calculation by using DIALux 4.13 softwareWizard. The study presents how a very big number of calculations can be done in a very short amount of time. For the advantages of the method and increased calculation speed to be acknowledged, a case study regarding lighting class parameters for footpaths considering different standards is presented. The Standards considered in the case study are: Romanian Standard, European, U.S.A. and from Denmark, which after extensive studies are considered to be the standards with the biggest differences. The first conclusion of the paper is that the automated solution can do a very big number of calculations in a relatively small amount of time, but there are limits for the program, which crashes if the number of lighting distribution curves is very high. The paper also proposes a new parameter to evaluate the energy efficiency, linear power density [W/km] which will be used in parallel with the one recommended by the standards, unitary power density [W/m²/lx].

Keywords: lighting class; illuminance; overall uniformity; vertical illuminance; cylindrical illuminance; DIALux; Wizzard.

^{*}Corresponding author; e-mail: alexandruviorelrusu@gmail.com

1. Introduction

This paper presents a technical study regarding the automation of street lighting straight road calculation. The software used to do the calculation is DIALux 4.13. This software has a Wizard that can theoretically do countless number of straight road calculation. For the paper to have a more applicable role, the second part of the paper is a case study regarding lighting class parameters for footpaths around the world. The study consists in a parallel calculation for two footpaths, for each lighting class, considering 4 different standards: Romanian standard (NP 062, 2002), European standard (EN 13201-2:2015), U.S.A. (RP08, 2014) and Danish (Manual for Street Lighting Facilities and Planning, 2014). A similar case study for different roads is presented (Rusu, 2019a) and the same method was used to do a study for carriageway lighting classes (Rusu, 2019b).

2. Automatic Solutions for Street Lighting Straight Road Calculation

The software used to automate the calculations is DIALux 4.13. This software has a platform named "WIZARD" for inserting an optimised luminaire arrangement. Fig. 1 presents the parameters based on which the software does all combinations to find the best solution possible. Some of the parameters can be variable: distribution curves, distance between poles, height of pole, boom angle, length of the bracket arm, while others are fixed: distance of the pole to roadway, type of arrangement.

N N	Wizard for inserting an optin	nised lumina	ire arrangen	nent				×
Variable parameters:	Variable arrangement p Specify which paramet Alternatively edit the v	parameters ers of the lum alues of the f	inaire arrange ìxed parameti	ement are allo ers.	wed to	vary at which ir	ntervals.	1
- Distance between poles;	Parameters that may be	e varied for th	ne optimisatior	n:				
- Height of pole;	Parameter	Minimum	Maximum	Increment	J			7
- Distance from the lamp	Pole Distance	40.000	60.000	1.000	m			
to the carriageway edge.	Height	8.000	8.000	1.000	m			
Boom angle:	Slope angle				•			
- Boom angle;	Number of combinations	s to investiga	te: 21					
Fixed parameters: - Arrangement type - Distance from pole to Roadway;	Fixed parameters for Pole Distance: Height: Light overhang: Indination: Distance Pole to Roz Boom Length:	the optimisat	on 20.000 3.000 -3.505 5 4.500 1.000	m Arrar m Sing m Sing 0 Doub 0 Doub 0 m Tri m Fri	gemen e row, e row, le row, le row, ked dis ked Boo	t Type bottom top opposing .with offset tance xm Length		n -0-
_					1			
						< Back	Next >	Cancel

Fig. 1 – Selection of the parameters of the luminaire arrangement.

Analysing Fig. 2 one can see that based on the input, the program can do all combinations possible and export the solutions. Considering that the export is in excel it can be filtered and sorted based on any of the parameters from the table head.

Illumination									
class	Luminaire	Lamp	Result	Distance [m]	Height [m]	Overhang [m]	Slope angle [°]	Em [lx]	Emin [lx]
	SCHREDER TECEO 1 / 5136 / 48								
S1	LEDs 350mA NW / 407952	48 LEDs 350mA NW	Suitable	38	8	-4	0	15.19	6.65
	SCHREDER TECEO 1 / 5136 / 48								
S1	LEDs 350mA NW / 407962	48 LEDs 350mA NW	Suitable	38	8	-4	0	15.29	6.37
	SCHREDER TECEO 1 / 5136 / 48								
S1	LEDs 350mA NW / 407952	48 LEDs 350mA NW	Suitable	37	8	-4	0	15.59	7.05
	SCHREDER TECEO 1 / 5136 / 48								
S1	LEDs 350mA NW / 407962	48 LEDs 350mA NW	Suitable	37	8	-4	0	15.7	6.78
	SCHREDER TECEO 1 / 5136 / 48								
S1	LEDs 350mA NW / 407952	48 LEDs 350mA NW	Suitable	36	8	-3.5	0	15.15	6.63
	SCHREDER TECEO 1 / 5136 / 48								
S1	LEDs 350mA NW / 407962	48 LEDs 350mA NW	Suitable	36	8	-3.5	0	15.26	6.42
	SCHREDER TECEO 1 / 5136 / 48								
S1	LEDs 350mA NW / 407952	48 LEDs 350mA NW	Suitable	36	8	-4	0	16.03	7.55
	SCHREDER TECEO 1 / 5136 / 48								
S1	LEDs 350mA NW / 407962	48 LEDs 350mA NW	Suitable	36	8	-4	0	16.13	7.29
	SCHREDER TECEO 1 / 5136 / 48								
S1	LEDs 350mA NW / 407952	48 LEDs 350mA NW	Suitable	35	8	-3.5	0	15.57	7.04
	SCHREDER TECEO 1 / 5136 / 48								
S1	LEDs 350mA NW / 407962	48 LEDs 350mA NW	Suitable	35	8	-3.5	0	15.7	6.84
	SCHREDER TECEO 1 / 5136 / 48								
S1	LEDs 350mA NW / 407952	48 LEDs 350mA NW	Suitable	35	8	-4	0	16.47	7.99
		-		6 D	T 4 T	****			

Fig. 2 – Export example from DIALux Wizard.

3. Case Study on Footpath Lighting Classes Around the world

The scope of this chapter is not just to show the utility of the calculating method, but also to establish which of the standards are more or less restrictive when referring to pedestrian areas. Street lighting improves the safety of drivers, riders and pedestrians. It is well known that street lighting has a very big effect in reducing crime rate at night (Farrington and Welsh, 2008; Atkins *et al.*, 1991) and pedestrian's sense of security (Cellucci *et al.*, 2016; Mattoni *et al.*, 2017). Pedestrians suffer from decreased visibility in the dark, this is why a good street lighting system reduces the risk of accidents.

Table 1	
Nomenclature	

Parameter	Description
E, E_{avg}, E_{hm}	horizontal illuminance averaged over a road area
E_H	[lx];
E_{min}, E_h	lowest illuminance value on a road area [lx];
E_{sc}	total luminous flux falling on the curved surface
	of a very small semi cylinder divided by the
	curved surface area of the semi cylinder [lx];
$E_{sc,min}$	lowest semi-cylindrical illuminance on a plane
	at a specified height above a road area [lx];
E_{v}	illuminance at a point on a vertical plane [lx];
$E_{v,min}$	lowest vertical plane illuminance on a plane at a
	specified height above the road area [lx];

A case study regarding lighting class parameters and the way of selecting the lighting classes considering different standards is presented. To reduce the number of calculations this method is used to try to determine the best solution possible. For the results to be more precise, the case study is done for two very different road arrangement, one of 16 m and one of 40 m width. The Standards considered in the case study are: Romanian, European, U.S.A. and from Denmark, which, after extensive studies are to be considered the standards with the biggest differences.

In Tables 2, 3, 4 and 5 there is a centralization of the lighting classes from each standard and the values that need to be met so that the solution is considered correct.

Class	E_H	[lx]	E_{sc} [lx]				
	Medium	Minimum	Minimum value				
	value	value					
P1	20.0	7.5	5.0				
P2	10.0	3.0	2.0				
P3	7.5	1.5	1.5				
P4	5.0	1.0	1.0				
P5	3.0	0.6	0.75				
<i>P</i> 6	1.5	0.2	0.5				
<i>P</i> 7		No imposed v	ralue				

 Table 2

 P Lighting Classes for Pedestrian and Cyclists (NP062, 2002)

P Lighting Clo	asses for Pedest	rian and Cycli	ists (**EN 13	201, 2015)		
	Horizontali	lluminanco	Additional requirements if facial			
	HOHZOIItai I	Pedestrian and Cyclists (**EN 13201, 20Additional requirements if fac recognition is necessaryg E_{min} [maintained] [maintained][maintained][maintained] [maintained][maintained][maintained] [maintained][maintained][maintained] [maintained][maintained][maintained] [maintained][maintained][maintained][maintained] [maintained][maintain	ition is			
Class			neces	ssary		
	E_{avg}	E_{min}	$E_{v,min}$	$\overline{E_{sc,min}}$		
	[maintained]	[maintained]	[maintained]	[maintained]		
	lx	lx	lx	lx		
P1	15.0	3.0	5.0	5.0		
P2	10.0	2.0	3.0	2.0		
P3	7.5	1.5	2.5	1.5		
P4	5.0	1.0	1.5	1.0		
P5	3.0	0.6	1.0	0.6		
P6	2.0	0.4	0.6	0.2		
	Performance	Performance				
P7	not	not				
	determined	determined				

Table 3

Table 4 <i>E Lighting Class</i> (Manual for Street Lighting Facilities and Planning, 2014)												
E-rank Lighting Class	E1	E2	E3	E4								
Average Illuminance, minimum	5.0	2.5	1.0	-								
Uniformity, minimum	R	0.15	0.15	0.15	-							

Table 5	
Maintained Illuminance Values for Walk	ways (RP08, 2015)

Road	Area Classification	F_{max}	<i>F</i>	<i>E/</i>
Pedestrian conflict area	Type of walkway	[lx/fc]	[lx/fc]	$E_{avg'}$ E_{min}
High	Low	10/1	5/0.5	4.0
Medium	Low	5/0.5	2/0.2	4.0
	Rural/Semi-Rural	2/0.2	0.6/0.06	10.0
Low	Low Density Residential	3/0.3	0.8/0.08	6.0
	Medium Density Residential	4/0.4	1/0.1	4.0

In this case study the calculations are done for two particular arrangements. The main information of each road are presented in Table 6. Considering the high number of calculations, the height of the poles were considered fixed (8 m). The length and angle of the bracket arm, the lentil used in the calculation and the distance between the poles were chosen using the DIALux 4.13 Wizard in between some limits. Based on this limits, the program calculates and finds the best solution possible. The family of the luminaires used is TECEO from Schreder supplier and the overall maintenance factor is 0.7.

	Road Main Information										
Road	Width [m]	Arrangement	Height of pole [m]	Footpath Width [m]	Distance Pole to edge of footway [m]						
Arrangement 1	40	Staggered	8	2.5	0.5						
Arrangement 2	16	Staggered	8	2.5	0.5						

Table 6

For a better understanding of the roads, in Fig. 3 and Fig. 4 there is an overview of the streets from the DIALux calculations.

Fig. 3 – Road 1 Arrangement – 40 m width, 1,2 – footpath, 3,4 – parking, 5 – carriageway.

Fig. 4 – Road 2 Arrangement - 16m width, 1,2 – footpath, 3,4 – parking, 5 – carriageway.

The final scope of the Dialux calculation is to obtain the best efficiency of the system. The paper (Prachi, 2011) proposes that the efficiency of the system should be evaluated based on the power consumption per square meter per lux, $[W/m^2/lx]$. The scope is to get a solution with the smallest power density possible, but still comply with the values imposed by the standards. The results of the calculation are centralized in Table 7 and Table 8. Analysing the tables one can see that there are important differences between the results for each standard. When one of the conditions is facial recognition, results are difficult to obtain, which in some cases can mean a considerable reduction of distance between poles.

Based on the data from Table 7, Table 8 and Fig. 5 one can understand that the required power increases with the level of illumination and is much higher if facial recognition is one of the design requirements. The interesting

fact is that when there is no need for facial recognition (Fig. 5 b, c) the differences are very small, although the width of the street is much larger for Road 1 arrangement compared to Road 2. When conditions of vertical or hemicylindrical illuminance need to be met for facial recognition purpose, the angle of the bracket arm needs to be bigger for the lighting fixture from the other side to light the footpath.

Standard	Light Class	Power of the lamp	Distance between	Linear specific	Unitary specific	Eavg [lx]	Emin [lx]	Evmin [1x]	Emin.sc [1x]	Eavg/ Emin
			poles	power [W/km]	power [W/m²/lx]					
	P1	2x76W	23	6609	0.049	26.86	15.75	-	5.12	-
	P2	2x60W	30	4000	0.054	14.93	4.03	-	2.02	-
NDOGO	P3	2x35W	27	2593	0.048	10.82	4.96	-	1.40	-
NP002	P4	2x18W	24	1500	0.044	6.81	3.76	-	1.03	-
	P5	2x10W	21	952	0.042	4.49	3.07	-	0.76	-
	P6	2x10W	23	870	0.084	2.18	0.93	-	0.5	-
	P1	2x68W	46	2957	0.037	16.12	5.03	-	-	-
	P2	2x52W	48	2167	0.037	11.78	3.19	-	-	-
*** EN	P3	2x35W	50	1400	0.037	7.58	1.6	-	-	-
13201-2:2015	P4	2x27W	54	1000	0.038	5.24	1.01	-	-	-
	P5	2x10W	31	645	0.043	3.01	1.59	-	-	-
	P6	2x10W	46	435	0.042	2.05	0.61	-	-	-
*** EN	P1	2x76W	25	6080	0.056	21.82	11.51	4.65	4.02	-
13201-2:2015	P2	2x60W	27	4444	0.068	13.06	7.67	3.09	2.15	-
with facial	P3	2x43W	26	3308	0.074	8.98	6.07	2.9	1.91	-
recognition	P4	2x27W	26	2077	0.077	5.36	3.48	2.58	1.72	-
	P5	2x18W	26	1385	0.068	4.05	2.48	1.00	0.68	-
	P6	2x10W	26	769	0.054	2.85	1.55	0.61	0.42	-
Denmark	E1	2x35W	47	1489	0.06	5	0.45	-	-	-
	E2	2x18W	47	766	0.061	2.5	0.4	-	-	-
	E3	2x10W	59	339	0.068	1	0.26	-	-	-
RP08	High	2x76W	32	4750	0.04	23.9	-	5.2	-	1.8
	Medium	2x52W	29	3586	0.043	16.5	-	2.0	-	2.4
	Low Pedestrian Residential Low	2x10W	24	833	0.056	3.0	-	0.8	-	1.6
	Low pedestrian Residential Medium	2x18W	29	1241	0.039	6.3	-	1.1	-	2.3
	Low Pedestrian Rural	2x10W	28	714	0.068	2.1	-	0.6	-	3.1

 Table 7

 Specific Power Calculated for Road 1

Road 1 Road 2

с

b

Fig. 5 – Comparison of specific linear power.

		Spec	ijic I Ow	er Cuicui	uieu joi 1	10000 2	1			
Standard	Light Class	Power of the lamp	Distance between poles	Linear specific power [W/km]	Unitary specific power [W/m²/lx]	Eavg [lx]	Emin [lx]	Evmin [1x]	Emin.sc [lx]	Eavg/ Emin
	P1	2x76W	29	5241	0.049	21.02	14.19	-	5.02	-
	P2	2x68W	53	2566	0.051	10.03	5.11	-	2.58	-
NDOGO	Р3	2x35W	37	1892	0.048	7.91	5.02	-	1.77	-
NP062	P4	2x35W	55	1273	0.051	5.02	2.5	-	1.43	-
	P5	2x18W	43	837	0.052	3.24	1.99	-	0.75	-
	<i>P6</i>	2x18W	62	581	0.052	2.24	1.04	-	0.5	-
	P1	2x52W	38	2737	0.036	15.19	6.65	-	-	-
	P2	2x52W	50	2080	0.036	11.56	3.09	-	-	-
*** EN	P3	2x35W	51	1373	0.036	7.6	1.76	-	-	-
13201-2:2015	P4	2x18W	38	947	0.035	5.36	2.23	-	-	-
	P5	2x10W	32	625	0.04	3.13	1.6	-	-	-
	<i>P6</i>	2x10W	48	417	0.037	2.27	0.68	-	-	-
*** EN	P1	2x84W	38	4421	0.058	15.12	9.26	5.4	5.27	-
13201-2:2015 with facial	P2	2x68W	45	3022	0.054	11.18	6.47	3.14	2.61	-
recognition	P3	2x35W	34	2059	0.052	7.85	4.34	2.53	2.23	-
	P4	2x35W	46	1522	0.053	5.74	3.27	1.51	1.28	-
	P5	2x18W	33	1091	0.063	3.48	2.15	1.09	1.05	-
	<i>P6</i>	2x10W	33	606	0.059	2.06	1.18	0.60	0.52	-
Denmark	E1	2x35W	48	1458	0.055	5.26	0.44	-	-	-
	E2	2x18W	48	750	0.059	2.53	0.46	-	-	-
	E3	2x10W	61	328	0.066	1.0	0.28	-	-	-
RP08	High	2x52W	29	3586	0.056	12.9	-	5.1	-	1.5
	Medium	2x35W	41	1707	0.05	6.8	-	2.1	-	1.5
	Low Pedestrian Residential Low	2x18W	45	800	0.053	3.0	-	0.8	-	1.6
	Low pedestrian Residential Medium	2x18W	34	1059	0.052	4.1	-	1.0	-	1.5
	Low Pedestrian Rural	2x10W	34	588	0.059	2.0	-	0.6	-	1.7

 Table 8

 Specific Power Calculated for Road 2

Fig. 6 – Comparison of specific unitary power.

Looking at Fig. 6 one can see that the unitary specific power $[W/m^2/lx]$, is, in some cases, smaller for the road with more traffic lanes. This fact indicates a problem in establishing the efficiency of the street lighting system when $E_{v,min}$ and $E_{sc,min}$ needs to be taken into account. Although the standards tell that the efficiency is compared to E_{avg} , in reality, when $E_{v,min}$ or $E_{sc,min}$ need to be met it is possible that for the same road, an installation with a smaller power to satisfy all conditions and to be considered less efficient, which from the user's point of view can be confusing. Based on this study the author recommends the

94

utilization of a new parameter of energy efficiency in parallel with the one recommended by the standards. This parameter will reflect the linear power density [W/km] and will be calculated with the formula:

$$\eta = \frac{P \times 1000}{d} \left[\text{W/km} \right] \tag{1}$$

where: P – Sum of the power of the lamps from each side of the road; d – Distance between poles.

This formula can be used only if the arrangement on both side is symmetric, otherwise the formula will be:

$$\eta = \frac{P_1 \times 1000}{d_1} + \frac{P_2 \times 1000}{d_2} + \dots + \frac{P_n \times 1000}{d_n} [W/km]$$
(2)

where: Pi – Power of the lamp from each arrangement of the road; d_i – Distance between poles from each arrangement of the road.

4. Conclusions

Based on this paper we can conclude that this method of finding the best solution for straight road calculation is much faster than other ways of doing the calculations. The study-case demonstrates that the most restrictive standard is the Romanian, which, although it has the biggest lighting level requirement, E_{avg} for each lighting class, it also has the $E_{avg,sc}$ value not optional, which increases the power of the light needed a lot in most of the cases. It is clear that the Denmark standard is much less restrictive in regards to footpath lighting requirement, most probably, because of the very low conflict rate in the country.

Although the standard relate to unitary power density $[W/m^2/lx]$ as the energy efficiency unit of the lighting system, this value sometimes is not very relevant because it can't give a clear reflection of the efficiency of the system. This paper recommends the utilization of an extra parameter, linear power density, to establish the efficiency of the system, measured in [W/km], which would give a clear understanding of what is the power consumption for a section of a road.

REFERENCES

- Atkins S., Husain S., Story A., *The Influence of Street Lighting on Crime and Fear of Crime*, 1991.
- Cellucci L., Bisegna F., Gugliermetti F., Navvab M., *Lighting Distribution Affects Pedestrians Sense of Security*, 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 7-10 June 2016.
- Farrington D.C., Welsh B.C., *Effect of Improved Street Lighting on Crime: Systemic Review*, Home Office Research Study, 251, 2002, 2008.

- Mattoni B., Burattini C., Bisegna F., Fotios S., *How do Illuminance Variations Affect Reassurance?*, 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Milan, Italy, 6-9 June 2017.
- Pracki P., A Proposal to Classify Road Lighting Energy Efficiency, 2011, Lighting Res. Technol.; Vol. 0: pp. 1-10.
- Rusu A.V., Lucache D.D., Livint G., Galatanu C.D., *Study on Illuminance Class Selection in Street Lighting Design*, MPS, Cluj Napoca, 9-11 June, 2019a.
- Rusu A.V., Lucache D.D., Livint G., *Study case for Illuminance Calculation for Footpaths*, 12th International Conference and Exhibition on Electromechanical and Energy Systems, Chişinău, Republica Moldova, 10-11 October, 2019b.
- *** NP 062: 2002: Normativ pentru proiectarea sistemelor de iluminat rutier și pietonal.
- *** ANSI/IESNA RP08–14, Roadway Lighting, 2014.
- *** Manual for Street Lighting Facilities and Planning, April 2014.
- *** EN 13201-2:2015, Road lighting -Part 2: Performance Requirements, January 2016.

METODE AUTOMATE DE ALEGERE A SOLUȚIEI OPTIME ÎN ILUMINATUL STRADAL

(Rezumat)

Această lucrare prezintă o metodă automată de calcul pentru iluminatul stradal utilizând asistentul programului DIALux 4.13. Lucrarea analizează o metodă prin care se realizează un număr foarte mare de calcule într-un timp foarte redus. În vederea realizării acestor calcule s-au considerat o serie de parametri variabili: curbe de distribuție a intensității luminoase, distanța dintre stâlpi, lungime și unghi de înclinare consolă. Pentru realizarea calculelor s-au luat în considerare și o serie de parametri ficși: distanța de la stâlp la șosea, aranjament. Pentru a evidenția utilitatea și viteza cu care se realizează calculele s-a realizat un studiu de caz prin care se compară valorile recomandate pentru proiectarea sistemelor de iluminat stradal pietonal (trotuare) din diverse țări. Standardele pentru care s-a realizat studiul sunt: standardul românesc NP062, standardul european EN 13201-2 cel american RP08 și cel din Danemarca.

Prima concluzie în urma studiului realizat este că timpul în care se poate găsi soluția optimă, este foarte redus, durând aproximativ 5 minute realizarea unei soluții în care au fost realizate aproximativ 5000 de combinări pe baza parametrilor evidențiați mai sus. Alt lucru constatat este că programul are totuși niște limitări generate de numărul de curbe de distribuție importate. S-a constatat că la un număr mai mare de curbe de distribuție (aproximativ 100) programul nu mai reușește să calculeze, acesta blocându-se.

A doua concluzie importantă este că cel mai restrictiv standard din punct de vedere al zonelor pietonale este NP062, acesta având și cel mai mare consum energetic necesar pentru îndeplinirea valorilor recomandate. Valoarea puterii unitare (W/m²/lx), este aproape tot timpul mai mare decât în cazul celorlalte standarde, lucru care confirmă faptul că normativul este vechi și nu ține cont de noile cerințe de eficiență energetică

care ar trebui să reprezinte unul din principalele criterii atunci când proiectăm orice instalație consumatoare de energie.

Deși standardul face referire la densitatea de putere unitară $[W/m^2/lx]$ ca și unitate de măsurare a eficienței sistemului de iluminat, uneori această valoare nu este foarte relevantă. Această lucrare recomandă utilizarea unui nou parametru, suplimentar, densitatea specifică liniară, pentru a stabili eficiența sistemului, măsurată în [W/km], ceea ce ar oferi o imagine clară a consumului de energie pentru o secțiune de drum.