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Abstract. Nonlinear systems with hyperchaotic dynamical behaviour are 

studied for applications in complex measurement, modulation and encryption. 
Unidimensional signals resulting from medical tests can be securely transmitted 
using chaotic encryption. The present paper analyses synchronization of 
hyperchaotic systems applied in secure communication. The resulting emitter-
receiver pair performance is presented from both dynamic and statistic points of 
view. Possible application in biomedical signal transmission is analyzed by 
computer simulations. 

 

Keywords: hyperchaotic dynamics; chaos synchronization; nonlinear 
systems; signal encryption. 

 
1. Introduction 

 
Nonlinear systems can perform complex dynamical behaviors, chaotic 

and hyperchaotic ones being the most difficult to design for communication 
applications. Chaotic and hyperchaotic systems were implemented using both 
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analog (Sambas, 2015) and digital (Bouraoui, 2013) circuits. Several previously 
published results show that more complex emitter dynamical behavior ensures 
better security of the transmitted signal (Grigoraş, 2017; Maqbool, 2017). This 
justifies the analysis of hyperchaotic systems applied as encryption emitting 
system, while the synchronizing receiver decrypts the desired signal. 

One of the most attractive applications concerns biomedical signal 
transmission, taking into account that analysis results and medical conclusions 
have to be protected from unauthorized access (Beck, 2021; Liao, 2021). 

The present contribution aims at designing a secure communication 
system starting from a hyperchaotic emitter, developing a synchronizing 
receiver and analyzing the performance of biomedical signal transmission using 
the resulting emitter-receiver pair. The dynamic and statistic properties 
(Grigoraş, 2015) of the designed system pair are presented based on state 
equations of the systems. The possibility of applying the proposed 
communication system to biomedical signal transmission is also highlighted. 

The following section is devoted to the design of the nonlinear emitter 
and synchronizing receiver. The dynamic and statistical analysis results 
highlight the efficiency of resulting communication system. Simulation results 
confirming the desired behavior, including the transmission of complex ECG 
and EEG medical signals, are presented in the third section. The final section 
highlights resulting conclusions. 

 
2. System Design 

 
The proposed analog nonlinear system for emitter implementation is 

based on the hyperchaotic order four system developed in (Ma, 2013). In order 
to help designing the synchronizing receiver, the state equations of the emitter 
are slightly modified compared to the ones in the quoted paper, by adding a 
supplementary linear term to the last state equation: 

 

( ):

( ) ( )

E E E E E E

E E E E

E E E E E

E E E E

E

dx dt a x a y w y z
dy dt b y x z

E
dz dt d x c z x y
dw dt e x e y f w

Out t x t

= ⋅ − ⋅ + − ⋅
 = − ⋅ + ⋅
 = ⋅ − ⋅ + ⋅
 = − ⋅ − ⋅ − ⋅
=

        (1) 

 
The state variables of the emitter system are denoted with the index ‘E’, 

in order to easily differ from the receiver state variables that will be denoted 
with the index ‘R’. The state vector of the emitter results: 
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Fig. 1 ‒ Time evolution of the four state variables. 
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[ ]TE E E Ex y z w=x     (2) 

The state equations parameters are the ones presented and used in 
system analysis in (Ma, 2013): 

0.89 9 50 0.06 0.9a b c d e= = = = =    (3) 

  

  
Fig. 2 ‒ Tri-dimensional projections of the emitter attractor. 

 

 
 

Fig. 3 ‒ Poincare section of the system attractor. 
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Because the coefficient in the added term of the fourth equation is 
relatively small, f = 0.3, the hyperchaotic behavior of the nonlinear system is 
not modified, as can be seen in the graphical representations of the example in 
Fig. 1 of the time evolution of the system state variables. The same aspect can 
be seen in the examples in Fig. 2, where tri-dimensional projections of the 
system attractor are similar to the ones in the quoted paper, and in Fig. 3, where 
examples of Poincare sections suggest hyperchaotic behavior. 

The corresponding nonlinear receiver is designed using the emitter 
partitioning method. From the hyperchaotic emitter, the first state variable, 
Out(t) = xE(t), is transmitted and the receiver system is described by copying the 
other three differential equations: 

( )

( ) ( ) ( )
( )

: ( ) ( )
( )

E

R R R

R R R

R R R

Rec t Out t x t
dy dt b y Rec t z

R dz dt c z d Rec t Rec t y
dw dt e y f w e Rec t

= =

= − ⋅ + ⋅
 = − ⋅ + ⋅ + ⋅
 = − ⋅ − ⋅ − ⋅

       (4) 

In the receiver state Eqs. (4) the state variables of the receiver are 
denoted with the index ‘R’ and only the received signal, Rec(t) = xE(t), keeps the 
index from the emitter system. The linear part of the receiver state evolution 
equations, without the received signal to highlight the receiver dynamics are: 

( ):
R R

Lin R R

R R R

dy dt b y
R dz dt c z

dw dt e y f w

= − ⋅
 = − ⋅
 = − ⋅ − ⋅

   (5) 

The linearized receiver, (Rlin), state Eqs. (5) have the state transition 
matrix, A: 

0 0
0 0

0

b
c

e f

− 
 = − 
 − − 

A      (6) 

The state transition matrix eigenvalues result negative for positive 
coefficient values 

( ) ( )T T
y z w b c fλ λ λ = − − −    (7) 

This ensures the stability of (Rlin) system, thus fulfilling the necessary 
condition for synchronization. In order to fulfill a sufficient condition, the error 
dynamics between emitter and receiver can be used. The error vector does not 
contain the transmitted signal, xE(t), resulting: 
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[ ] [ ]T T TT
y z w E E E R R Ry z w y z wε ε ε = = − ε

 (8) 

By subtracting the state equations of the receiver (4) from their 
counterparts of the emitter, the differential equations that model the time 
evolution of the error result in the form: 

( ):
y y E z

z z E E y

w y w E

d dt b x

d dt c d x x

d dt e f e x

ε ε ε

ε ε ε ε

ε ε ε

 = − ⋅ + ⋅
 = − ⋅ + ⋅ + ⋅
 = − ⋅ − ⋅ − ⋅

  (9) 

Eliminating the transmitted signal Out(t) = xE(t), from the error 
differential equations, to highlight only the error dynamical evolution, we 
obtain the linear differential equations: 

( ):
y y

Lin z z

w y w

d dt b

d dt c
d dt e f

ε ε

ε ε ε
ε ε ε

= − ⋅


= − ⋅
 = − ⋅ − ⋅

   (10) 

Thus, the error dynamic is dominated by the same state transition 
matrix as the receiver (6) with the same eigenvalues (7) highlighting the 
exponential decrease of the error to zero, as shown in the graphical example in 
Fig. 4. 

 
Fig. 4 ‒ Time decreases of y, z and w state synchronization errors. 

 
3. Biomedical Modulation Results 

 
In order to use the synchronizing pair (E) - (R), Eqs. (1) and (4), for 

secure transmission of an analog modulating signal, the direct modulation 
method is used. The modulating signal, m(t), is added to the first equation of the 
emitter, leading to a nonlinearly dynamically modulated transmitted signal 
Out(t) = xE(t). 
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( )mod

( )

:

( ) ( )

E E E E E E

E E E E

E E E E E

E E E E

E

dx dt a x a y w y z m t
dy dt b y x z

E
dz dt d x c z x y
dw dt e x e y f w

Out t x t

= ⋅ − ⋅ + − ⋅ +
 = − ⋅ + ⋅
 = ⋅ − ⋅ + ⋅
 = − ⋅ − ⋅ − ⋅
=  (11) 

The receiver (4) can demodulate the received signal Rec(t) by 
subtracting a recovered first state variable, xR(t), at the receiver end from the 
corresponding emitter one, xE(t). 

( )( )

( ) ( ) ( ) ( )
R R R R R R

E R

x t a x a y w y z dt
m t x t x t m t

= ⋅ − ⋅ + − ⋅

= − ≈
∫

   (12) 

 

 
Fig. 5 ‒ Modulation signal, demodulated signal and demodulation error. 
 
The demodulated signal 𝑚𝑚�(𝑡𝑡), approaches the values of the modulating 

signal, m(t), after the synchronization transient has faded, as suggested in the 
example in Fig. 5, where a sine modulating signal was used. For wider band 
signals, the graphical representations in Fig. 6 show an example of transmitting 
a periodic square shaped signal, highlighting the fact that the larger modulating 
signal spectrum leads to a somewhat larger demodulating error, especially at the 
faster variation of the rectangular fronts. 
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Fig. 6 ‒ Modulating square signal, demodulated signal and demodulation error. 

 
The main application desired for the proposed communication system 

aims at biomedical signal transmission. One of the tested modulating signals is 
the ECG signal, as the example in Fig. 7. The more complex modulating signal 
gives a wider frequency spectrum as shown in Fig. 8. 

 

 
Fig. 7 ‒ ECG signal.   Fig. 8 ‒ ECG spectrum. 

 

Still, the demodulated signal approaches sufficiently well the 
modulating one, as shown in Fig. 9. The somewhat larger demodulation error in 
Fig. 10, approaches the rectangular wide spectrum result, but it does not 
substantially affect the correctness of the desired application. 
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  Fig. 9 ‒ ECG demodulated signal.  Fig. 10 ‒ ECG demodulation error. 

By comparing the transmitted signal in Fig. 11, with the modulating one 
in Fig. 7 it is obvious that no time variation resemblance exists. A similar 
comparison can be made between the ECG frequency power spectrum in Fig. 8 
and the spectrum of the transmitted signal in Fig. 12. As seen from this 
statistical approach, even the frequency analysis does not allow an unauthorized 
receiver to decode the transmitted signal. 

 
         Fig. 11 ‒ ECG transmitted signal Fig. 12 ‒ ECG transmitted signal spectrum. 

 

 

  Fig. 13 ‒ EEG modulating signal.  Fig. 14 ‒ EEG demodulation error. 
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If a more complex EEG signal is used as a modulating one, as 
suggested in Fig. 13, the authorized demodulation is reasonably correct as 
suggested by the demodulation error in Fig. 14. 

 

          Fig. 15 ‒ EEG spectrum.                  Fig. 16 ‒  EEG transmitted spectrum. 

By comparing the frequency power spectra of the EEG modulating 
signal and transmitted one, the difference is obvious, statistically highlighting 
the good transmission security ensured by the proposed communication system, 
even in the case of more complex biomedical modulating signals. 
 

4. Conclusion 
 

The present contribution concentrates on designing an analogue emitter-
receiver pair based on modulation using hyperchaotic synchronization. The 
emitter development starts from a previously published hyperchaotic system, with 
slight modifications aiming at a simpler design of the synchronizing receiver. The 
dynamical behavior of the modified emitter is detailed using computer 
simulations, highlighting that the hyperchaotic behavior of the initial system is 
preserved. The synchronizing receiver is designed using the emitter partitioning 
method and both synchronization and external signal modulation are shown to 
function correctly. Even complex unidimensional biomedical signals are 
transmitted without error, after the synchronization transient has faded. Shown 
simulations are oriented towards EKG and EEG signals. Better methods for 
securely transmitting bidimensional medical signals require further research. 
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MODULAŢIA HIPERHAOTICĂ PENTRU TRANSMITEREA SECURIZATĂ A 

SEMNALELOR BIOMEDICALE 
 

(Rezumat) 
 

Sistemele neliniare cu o comportare dinamică hiperhaotică sunt studiate pentru 
aplicații în măsurări complexe, modulație şi criptare. Semnalele unidimensionale 
rezultate din analizele medicale pot fi transmise securizat folosind criptarea haotică. 
Lucrarea prezentă analizează sincronizarea hiperhaotică aplicată în comunicații 
securizate. Performanţa perechii emiţător-receptor este prezentată atât din punct de 
vedere dinamic cât şi statistic. Posibilitatea de aplicare în transmiterea semnalelor 
biomedicale este analizată prin simulări pe calculator. 
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