
BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI
Publicat de

Universitatea Tehnică „Gheorghe Asachi” din Iaşi
Volumul 67 (71), Numărul 2, 2021

Secţia
ELECTROTEHNICĂ. ENERGETICĂ. ELECTRONICĂ

DOI:10.2478/bipie-2021-0009

IMPLEMENTATION OF THE BERNSTEIN-VAZIRANI
QUANTUM ALGORITHM USING THE QISKIT FRAMEWORK

BY

ALEXANDRU-GABRIEL TUDORACHE∗, VASILE-ION MANTA and

 SIMONA CARAIMAN

“Gheorghe Asachi” Technical University of Iași, Romania,
Faculty of Automatic Control and Computer Engineering

Received: March 29, 2021
Accepted for publication: May 17, 2021

Abstract. This paper describes the basics of quantum computing and then

focuses on the implementation of the Bernstein-Vazirani algorithm, which can be
seen as an extension of the Deutsch-Josza problem (that solves the question on
whether a function is balanced or not). The idea behind the B-V algorithm is that
someone can find a secret number (sequence of bits) using only one
measurement, unlike the classical counter-part, that requires n measurements,
where n is the number of bits of the secret number. The implementation of this
algorithm, using the Python programming language, along with the Qiskit
framework (an open-source library for quantum operations from IBM),
illustrates how to create and simulate a circuit for such an algorithm. The circuit
is dynamically generated for the required number (which in practice is received
from a different source) and is used to measure the probability of each qubit. The
algorithm can also be extended for different types of data and can be used for
signal or image processing, as well as applications in cryptography.

Keywords: Quantum computing; Bernstein-Vazirani; quantum algorithm;
Qiskit.

∗Corresponding author; e-mail: alexandru.tudorache93@gmail.com
© 2021 Alexandru-Gabriel Tudorache et al.
This is an open access article licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

mailto:alexandru.tudorache93@gmail.com

32 Alexandru-Gabriel Tudorache et al.

1. Introduction

The quantum computing universe is one of the most exciting subjects in

the “information technology” field, especially with the latest physical
innovations, such as the creation of D-Wave, IBM Q System One (a 20-qubit
quantum computer) and Google’s quantum computer, which recently claimed
“quantum supremacy”, by performing a calculation in 200 seconds instead of
10,000 years, as it world have taken on a classical computer (they use a 54-qubit
Sycamore processor). Today it is possible not only to simulate the circuits on
classical computers, but to also run them and measure the results on real
platforms.

The most basic element in quantum processing is the qubit (quantum
bit), which, unlike the classical bit, that can either be 0 or 1, can simultaneously
be in multiple states (superposition) with different probabilities – these basic
states, named ket, are |0⟩ and |1⟩ . A superposition state, called |𝜓𝜓⟩ , can be
defined as (McMahon, 2008):

|𝜓𝜓⟩ = 𝛼𝛼|0⟩ + 𝛽𝛽|1⟩, (1)

where 𝛼𝛼 and 𝛽𝛽 are complex numbers, that verify |𝛼𝛼|2+|𝛽𝛽|2 = 1; |𝛼𝛼|2 is the
probability that a qubit is in the |0⟩ state and |𝛽𝛽|2 is the probability that a qubit
is in the |1⟩ state.

In order for a quantum algorithm to be implemented, a circuit that uses
different quantum gates for certain operations is required. All quantum gates are
described by unitary transforms, so they are all reversible; the number of inputs
is equal to the number of outputs; so, the input values can be obtained by
knowing the output values for each gate. Some of the basic gates, on one or
more qubits, are briefly presented below. The following gates act on a single
qubit:

• the NOT gate acts similarly to its classical counter-part; its action is
linear, so the state 𝑎𝑎|0⟩ + 𝑏𝑏|1⟩ changes to 𝑎𝑎|1⟩ + 𝑏𝑏|0⟩.
• the Z gate inverts the phase, by changing a qubit’s state from 𝑎𝑎|0⟩ +
𝑏𝑏|1⟩ to 𝑎𝑎|0⟩ − 𝑏𝑏|1⟩.
• the Hadamard gate can be applied to any of the basic states and the
result is a mix of the two with equal probability, that is:

𝐻𝐻|0⟩ = 1
√2
�1 1
1 −1� �

1
0� = 1

√2
�11� = 1

√2
��10� + �01�� = 1

√2
(|0⟩ + |1⟩) (2)

and

𝐻𝐻|1⟩ = 1
√2
�1 1
1 −1� �

0
1� = 1

√2
� 1
−1� = 1

√2
��10� − �01�� = 1

√2
(|0⟩ − |1⟩) (3)

Bul. Inst. Polit. Iaşi, Vol. 67 (71), Nr. 2, 2021 33

The following gates act on multiple qubits:
• the CNOT gate (controlled-NOT), the quantum version of the XOR
gate, as can be seen below:

Fig. 1 – CNOT gate.

|𝑎𝑎⟩ is called the control qubit, and |𝑏𝑏⟩ is the target qubit. If the control
qubit is in the |0⟩ state, then the target qubit is unchanged; if the control qubit is
in state |1⟩, the target qubit is inversed. The gate’s action (|𝑎𝑎𝑏𝑏⟩ → |𝑎𝑎(𝑎𝑎 ⊕ 𝑏𝑏)⟩)
can also be expressed as:

|00⟩ → |00⟩, |01⟩ → |01⟩, |10⟩ → |11⟩, |11⟩ → |10⟩.

• the SWAP gate inverts the values of the qubits: |𝑎𝑎𝑏𝑏⟩ → |𝑏𝑏𝑎𝑎⟩.
• the CCNOT gate, presented in the figure below:

Fig. 2 – CCNOT gate (Toffoli).

The 𝑎𝑎 and 𝑏𝑏 inputs don’t change their states (𝑥𝑥 = 𝑎𝑎 and 𝑦𝑦 = 𝑏𝑏); input
from 𝑐𝑐 will change its state by calculating the XOR value between 𝑐𝑐 and the
logic product (AND) of 𝑎𝑎 and 𝑏𝑏, according to the formula:

𝑧𝑧 = 𝑐𝑐 ⊕ (a ∧ b). (4)

34 Alexandru-Gabriel Tudorache et al.

The current paper presents the implementation of the Bernstein-
Vazirani algorithm using the Python programming language (and the Qiskit
framework), by dynamically creating a circuit using the gates above, and the
way this can be applied to the image processing field.

2. Quantum Algorithms

In order to utilize the full potential of the quantum universe, different

properties such as quantum entanglement and phase kick-back have been used
in various quantum algorithms.

One important quantum property is the phenomenon called phase kick-
back, where in specific conditions, the CNOT gate can affect not only the target
qubit, but also the control one. For example, by applying the CNOT gate to the
qubits in the following states we obtain:

CNOT: �|0⟩+|1⟩

√2
� �|0⟩−|1⟩

√2
� → �|0⟩−|1⟩

√2
� �|0⟩−|1⟩

√2
�. (5)

The idea behind this effect is that �|0⟩−|1⟩

√2
� (the target qubit in the

formula above) is an eigenvector (or eigenstate) of the NOT gate with the
eigenvalue -1 and an eigenvector of the identity gate (I) with the eigenvalue 1
(Kaye et al., 2007).

Starting from this observation, the concept of the quantum oracle was
developed, such as, for a function that takes 2 qubits as input, 𝑈𝑈𝑓𝑓 , that
implements a random function 𝑓𝑓: {0,1} → {0,1} , with 𝑈𝑈𝑓𝑓: |𝑥𝑥⟩|𝑦𝑦⟩ →
|𝑥𝑥⟩|𝑦𝑦 ⊕ 𝑓𝑓(𝑥𝑥)⟩, we can write:

𝑈𝑈𝑓𝑓: |𝑥𝑥⟩ �|0⟩−|1⟩

√2
� → (−1)𝑓𝑓(𝑥𝑥)|𝑥𝑥⟩ �|0⟩−|1⟩

√2
� (6)

An algorithm that needs only one measurement in order to find whether

a function 𝑓𝑓: {0,1} → {0,1} is constant or balanced is the Deutsch algorithm. A
function 𝑓𝑓 is constant if 𝑓𝑓(0) = 𝑓𝑓(1) , which implies 𝑓𝑓(0) ⊕ 𝑓𝑓(1) = 0 and
balanced if 𝑓𝑓(0) ≠ 𝑓𝑓(1) (𝑓𝑓(0) ⊕ 𝑓𝑓(1) = 1); the classical method requires two
measurements. The Deutsch-Josza algorithm is a generalization of the Deutsch
algorithm – the function 𝑓𝑓 operates on 𝑛𝑛 bits and has a single bit as output
𝑓𝑓: {0,1}𝑛𝑛 → {0,1}. The problem remains the same, to find out if 𝑓𝑓 is constant or
balanced (𝑓𝑓 is constant if 𝑓𝑓(𝑥𝑥) has the same value for any 𝑥𝑥, and balanced if

Bul. Inst. Polit. Iaşi, Vol. 67 (71), Nr. 2, 2021 35

𝑓𝑓(𝑥𝑥) = 0 for half of the entries and 𝑓𝑓(𝑥𝑥) = 1 for the other half). The classical
solution requires 2𝑛𝑛−1 + 1 queries (half + 1), but the quantum solution needs
only one query.

The Bernstein-Vazirani algorithm is an extension of the Deutsch-Josza
algorithm. Let there be a Boolean function 𝑓𝑓, which takes as input a string of
bits and returns 0 or 1, 𝑓𝑓: {0,1}𝑛𝑛 → {0,1}. The function calculates 𝑓𝑓(𝑥𝑥) = 𝑠𝑠 ⋅
x (mod2); the problem is to find the certain secret string 𝑠𝑠 (more details can be
found on https://qiskit.org/textbook/ch-algorithms/bernstein-vazirani.html).

3. Implementation of the B-V Algorithm

 The language of choice for implementing and testing the B-V algorithm
is Python, and the chosen framework is Qiskit – “an open-source quantum
computing software development framework for leveraging today’s quantum
processors in research, education and business” (as defined on the official page,
https://qiskit.org/). Qiskit offers support for both the execution and simulation
of the code written for quantum applications and algorithms.

 It is made up of 4 components:
• Qiskit Terra contains a set of tools for writing quantum programs at the

circuit level; it uses different optimizations for the available physical
quantum processor and manages the execution of the experiments;

• Qiskit Aer is the high-performance simulator component – it contains
optimized C++ simulator backends for the circuits compiled using
Qiskit Terra, along with tools needed to analyze various noise models;

• Qiskit Aqua contains a set of quantum algorithms that can be used in
different applications;

• Qiskit Ignis is a framework focused on the study of noise in quantum
systems.

One way to apply or implement the B-V algorithm for a common

scenario would be to consider the case of a simple image and then to select a
certain property of each pixel (or group of pixels) as input (secret number) for
the algorithm. The quantum circuit used to implement the B-V algorithm, when
applied to a simple grey-scale image, uses 8 qubits for each pixel representation,
as the gray value requires 8 bits (values are ranging from 0 to 255); there is also
an ancilla qubit (only one is required for the entire image, but for demonstration
purposes I drew the same one after each group of 8). The current

https://qiskit.org/textbook/ch-algorithms/bernstein-vazirani.html
https://qiskit.org/

36 Alexandru-Gabriel Tudorache et al.

implementation can generate the circuit dynamically (regardless of the size of
the binary representation). The circuit can be created in the following steps:

Step 1. Each of the 8 qubits is initialized with the |0⟩ state at first and

then set up in superposition using the Hadamard gate.

Step 2. The auxiliary qubit must be set to the eigenvector state �|0⟩−|1⟩
√2

�

– this is done by setting it first in the |1⟩ state and then using the Hadamard gate.
Step 3. For each bit of value 1, we add a CNOT gate, where the control

qubit is the corresponding qubit from the image and the target qubit is the
auxiliary qubit.

Step 4. There is one more set of Hadamard gates for all the image
qubits; basically, applying the Hadamard gate twice will not modify the qubit’s
state. If the qubit’s initial state is |0⟩ and the ancilla qubit is not used (the
corresponding bit from the gray value is 0) the Hadamard gates will have no
impact. If there is a CNOT gate using the image’s qubit and the ancilla qubit,
the intermediary result (after the first Hadamard gate and the CNOT gate) will

be the same as if the qubit’s initial state was |1⟩: �|0⟩−|1⟩
√2

�. Therefore, after the

second Hadamard gate, the qubit’s state will be |1⟩.

 In the following section, the algorithm is applied to a simple image:

Fig. 3 – Sample 2x2 image.

The grey levels for this image are:

� 38 96
136 217�.

Bul. Inst. Polit. Iaşi, Vol. 67 (71), Nr. 2, 2021 37

For each pixel, the generated circuits are presented bellow; the grey
intensity is saved in the vector 𝑞𝑞7𝑞𝑞6𝑞𝑞5𝑞𝑞4𝑞𝑞3𝑞𝑞2𝑞𝑞1𝑞𝑞0 ; each of them has a
probability of 100% (simulated result):

Fig. 4 – Circuit for grey level 38 (00100110).

Fig. 5 – Circuit for grey level 96 (01100000).

38 Alexandru-Gabriel Tudorache et al.

Fig. 6 – Circuit for grey level 136 (10001000).

Fig. 7 – Circuit for grey level 217 (11011001).

3. Conclusions

This paper presents a way of generating a circuit that implements the

Bernstein-Vazirani algorithm and then shows how this can be applied to a grey-
scale image. Thanks to the IBM platform, this algorithm could be tested and its
measurement results analyzed after the experiment execution. The idea can be
extended to different types of data images (RGB for example), but also various
data types in general, such as signals from external devices; a way of encrypting
the data can also be used before the algorithm is applied.

Bul. Inst. Polit. Iaşi, Vol. 67 (71), Nr. 2, 2021 39

A key point, used in the experiments from this paper, is the ability to
use the phase kick-back effect, exemplified here with the help of the Bernstein-
Vazirani algorithm. This can also be done in combination with some of the most
popular quantum image representation techniques, for further data processing,
depending on the scenario. Among these methods we mention the following:

• FRQI, flexible representation for quantum images (Le et al., 2011),
which allows the representation of an image by taking into account its
color and position, according to the following formula:

|𝜓𝜓⟩ = 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝑖𝑖|0⟩ + 𝑠𝑠𝑠𝑠𝑛𝑛 𝜃𝜃𝑖𝑖|1⟩,
with 𝜃𝜃 being the notation for the angle vector, used to specify the color;

• NEQR, novel enhanced quantum representation (Zhang et al., 2013),
that offers information about the color (grey level) and position for each
qubit;

• NCQI, novel quantum representation of color digital images (Sang et al.,
2017), building on NEQR and being used for color images, represented
using 3 color channels (RGB); the image state, for each pixel, can be
written as:

|𝜓𝜓(𝑦𝑦, 𝑥𝑥)⟩ = �𝑅𝑅𝑛𝑛𝑛𝑛_𝑞𝑞−1 …𝑅𝑅0𝐺𝐺𝑛𝑛𝑛𝑛_𝑞𝑞−1 …𝐺𝐺0𝐵𝐵𝑛𝑛𝑛𝑛_𝑞𝑞−1 …𝐵𝐵0�,
using nr_q to indicate the number of qubits for each color channel;

• QRCI, new quantum representation model of color digital images (L.
Wang et al., 2019), which uses the bit-plane to identify the image state,
for each of the 3 color components.

A survey that analyzes multiple quantum image representations, which
could be extended through the phase kick-back effect (and is therefore useful as
a general technique, depending on the nature of the quantum circuit), has also
been done a couple of years ago (Yan et al., 2016) and is a source of great
knowledge for researches that want to familiarize themselves with the field of
quantum image processing.

REFERENCES

Kaye P., Laflamme R., Mosca M., An Introduction to Quantum Computing, Oxford
University Press, New York, 2007.

Le P.Q., Dong F., Hirota K., A Flexible Representation of Quantum Images for
Polynomial Preparation, Image Compression, and Processing Operations,
Quantum Inf Process 10, 63-84 (2011).

McMahon D., Quantum Computing Explained, John Wiley & Sons, Inc., Hoboken,
New Jersey, 2008.

40 Alexandru-Gabriel Tudorache et al.

Sang J., Wang S., Li, Q., A Novel Quantum Representation of Color Digital Images,
Quantum Inf Process 16, 42 (2017).

Wang L., Ran Q., Ma J.Y., Yu S., Tan L., QRCI: A New Quantum Representation
Model of Color Digital Images, Optics Communications, 438, 147-158 (2019).

Yan F., Iliyasu A.M., Venegas-Andraca S.E, A SUrvey of Quantum Image
Representations, Quantum Inf Process 15, 1-35 (2016).

Zhang Y., Lu K., Gao Y., Wang, M., NEQR: A Novel Enhanced Quantum
Representation of Digital Images, Quantum Inf Process 12, 2833-2860 (2013).

https://qiskit.org/, Qiskit – Welcome to Quantum, 2019.
https://qiskit.org/textbook/ch-algorithms/bernstein-vazirani.html, Bernstein-Vazirani Algorithm,

2019.

IMPLEMENTAREA ALGORITMULUI CUANTIC BERNSTEIN-VAZIRANI

FOLOSIND BIBLIOTECA QISKIT

(Rezumat)

Această lucrare prezintă bazele procesării cuantice a informației, concentrându-
se apoi pe implementarea algoritmului cuantic Bernstein-Vazirani, care poate fi văzut ca
o extensie a algoritmului Deutsch-Josza, ce determină dacă o funcție este sau nu
balansată. Ideea care stă la baza algoritmului B-V este faptul că un număr secret
(secvență de biți) poate fi determinat cu o singură măsurătoare (un singur pas), spre
deosebire de alternativa clasică, care necesită n operații, unde n este numărul de biți pe
care se poate reprezenta numărul secret. Implementarea acestui algoritm, folosind
limbajul de programare Python, împreună cu framework-ul Qiskit (o bibliotecă de tip
open-source pentru operații cuantice scrisă de cercetătorii de la IBM), ilustrează cum se
poate crea și simula un circuit pentru un astfel de algoritm. Circuitul este generat în mod
dinamic pentru numărul cerut (care în practică este primit de la o sursă externă), fiind
folosit pentru a măsura probabilitatea fiecărui qubit. Algoritmul poate fi extins pentru
diverse tipuri de date și poate fi folosit pentru procesări de semnale sau imagini, precum
și în aplicații din domeniul criptografiei.

https://qiskit.org/
https://qiskit.org/textbook/ch-algorithms/bernstein-vazirani.html

	1. Introduction
	2. Quantum Algorithms
	3. Implementation of the B-V Algorithm
	3. Conclusions

	REFERENCES

