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Abstract. This research presents the main steps needed for designing a 

piece-wise linear trajectory which grants an unmanned aerial vehicle (UAV) to 
reach a destination pose in a workspace with dynamic obstacles. The first 
objective is characterized by the examination of kinematics and dynamics of a 
quadcopter. For this purpose, a nonlinear mathematical model was developed. 
The validation of the mathematical model was confirmed by MATLAB and real 
time experiments. The second step aims to properly map the 3D environment. 
For this objective, an algorithm for a cuboid rectangular decomposition was 
developed and implemented, by extending a 2D decomposition technique. The 
evaluation of the proposed path planning algorithm occurred for different 
scenarios and the validation of the results was established through numerical 
simulations. In the end, a comparison for two path planning scenarios is shown: 
for a 3D static environment and for a 3D dynamic environment, where the 
movement of a dynamic obstacle is known. 

 

Keywords: path planning; unmanned aerial vehicle; dynamic environment; 
cell decomposition. 

 
∗Corresponding author; e-mail: sofia.hustiu@academic.tuiasi.ro 
© 2021 Sofia Huştiu 
This is an open access article licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). 



66 Sofia Huștiu 
 

 

 
1. Introduction 

 
In the last years, Unmanned Aerial Vehicles (UAVs), also known as 

drones, have been used frequently in different applications such as military and 
surveillance, aerial photography, mapping the environment, and entertainment 
domain, e.g., drone racing. All these applications have in common the 
understanding of kinematic and dynamic of drone. This is mandatory for a 
collision free path planning.  

One challenge in 3D path planning with UAVs is represented by 
studying their dynamic. This is a complex problem, caused by the presence of 
six degrees of freedom of the drone. In this work, we have analyzed this 
problem by selecting a particular type of drone: quadcopter. After this study, the 
next step is captured by developing a control law for the trajectory. Several 
papers tackle issue (Gheorghiță et al., 2015; Tagay et al., 2021). In (Grieff, 
2017) is described a control planning method for a nano quadcopter Crazyflie. 
Analyzing the latter paper, we developed a mathematical model for Crazyflie 
2.0, which was validated in real indoor workspace. This contribution defines the 
first prerequisite described in our work. 

Another critical topic is defined by a collision free trajectory for the 
UAV, independent of the 3D space: static or dynamic. The collision free 
techniques can be based on classical approaches, e.g., Rapidly Exploring 
Random Trees (RRT) (Yao et al. 2015), Voronoi partitioning (Fang et al., 
2017), Artificial potential (Liu et al., 2016), or based on particular approaches, 
e.g., (Goel et al., 2018) - using an optimal flight routine in real environments, 
(Paranjape et al., 2015) - considers a time-delay for 3D circular path combined 
with aggressive turn-around maneuvers (ATA).  

Other methods are represented by swarm intelligence algorithms, 
simulating the nature’s behavior, e.g., (Duan et al., 2014) – based on pigeon 
behavior, (Ge et al., 2020) – based on fruit fly behavior. A different technique is 
represented by discrete models e.g., using Petri Net Toolbox in MATLAB 
(Păstrăvanu et al., 2004). In (Mahulea et al., 2018) the authors used Petri Net 
model the movements of a team of mobile robots, given a Boolean-based 
specification. 

The collision free path is especially difficult to be acquired in dynamic 
environments, especially when the movement of the obstacles is uncertain. 
Usually, the UAV requires an accurate localization in the 3D space, the on-
board sensors must be quick enough to detect and to monitor the movements in 
its surroundings, and the actuators should act fast to avoid the obstacles, based 
on a robust control law algorithm. Therefore, the complexity for this problem is 
increased. The work from this paper captures the study on a collision free 
trajectory in a known environment, this representing the second prerequisite for 
the UAV path planning area. We assume that this study will give us a valuable 
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base of knowledge, before tackling the collision avoidance topic in dynamic and 
uncertain environments. 

In the given context, the purpose of this paper is to present the main 
steps which are necessary to develop a collision free trajectory for an UAV 
from an initial to a desired final point, evolving in a dynamic 3D environment. 
The movement of the dynamic obstacle is assumed to be known. This work 
combines the results from (Huștiu et al., 2018; Lupașcu et al., 2019, Huștiu et 
al., 2020), adding new examples, explications and interpretations. The benefit 
of these precondition is evaluated through numerical simulations, by achieving 
a collision free trajectory in a known dynamic workspace. 

The next section describes the prerequisites for a piece-wise trajectory, 
divided into two parts: computation of a mathematical model for a quadcopter 
and mapping the 3D workspace to allow the drone to evolve in a dynamic 
space. The section 3 emphasizes the algorithm used for path planning, and 
section 4 captures the results of the proposed algorithm, visualized through 
numerical simulations. Also, a comparison between two different trajectories is 
commented (one trajectory considers only the static environment and the second 
trajectory considers the movement of the dynamic obstacle, thus being able to 
avoid the collision with it). At the end, the conclusions are presented in section 5. 
 

2. Prerequisites for a 3D Trajectory 
  

This section describes the prerequisites necessary to develop a piece-
wise linear trajectory for an omnidirectional drone in a dynamic known 
environment. For this reason, the problem formulation is defined, alongside 
with several mathematical notations used throughout this paper. 

This work includes a comparison between two UAV paths, in 
different scenarios: static and dynamic. For this reason, let us consider 
first a 3D environment in a shape of a rectangular cuboid with fixed 
limits, denoted as 𝐸𝐸 =  [𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚]𝑥𝑥[𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚]𝑥𝑥[𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚, 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚] , with 
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚, 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 ∈ ℝ . The environment contains n static 
obstacles (represented with purple color), having flat polygonal facets and flat 
base (z = 0). The obstacles are characterized as a convex and bounded 
polyhedron, defined in the set 𝑂𝑂 = {𝑂𝑂1,𝑂𝑂2, …𝑂𝑂𝑛𝑛} . Fig. 1 illustrates a 
representation of the defined 3D space, including an initial position 
(𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0)𝑇𝑇 ∈ ℝ3 (red circle) and a desired final position �𝑥𝑥𝑔𝑔,𝑦𝑦𝑔𝑔, 𝑧𝑧𝑔𝑔�

𝑇𝑇 ∈ ℝ3 
(blue star). In addition to this specified environment, one dynamical is defined 
𝐷𝐷𝐷𝐷𝐷𝐷 = �𝑥𝑥𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑥𝑥𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚�𝑥𝑥 �𝑦𝑦𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑦𝑦𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚�𝑥𝑥�𝑧𝑧𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑧𝑧𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚� , with  
𝑥𝑥𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑦𝑦𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑦𝑦𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑧𝑧𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑧𝑧𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 ∈  ℝ. The shape of it is 
pictured as a rectangular parallelepiped (orange color) and the movement is 
represented with the orange dashed line, depicted in Fig. 1. The velocity of the 
dynamic obstacle is denoted with 𝑣𝑣𝑣𝑣𝑙𝑙𝐷𝐷𝐷𝐷𝐷𝐷 and the direction is given by 𝑑𝑑𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷. 
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In both scenarios, the drone evolves with a constant velocity, denoted 
as 𝑣𝑣𝑣𝑣𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.  

 
Fig. 1 – Environment E with static obstacles (purple), initial position of DOb (orange) 

and movement direction (dashed orange line). 
 

 The mathematical description of a 3D convex polyhedral is essential for 
the proposed path planning algorithm. Therefore, two representations are given, 
as follows: 

• V-representation- based on the coordinates of the vertices which 
describes the shape. P denotes the convex hull of the vertices (Eq. (1)). 
This representation is valid only when the number of vertices is at least 
equal with three. With 𝜆𝜆𝑖𝑖 ∈ [0, 1] was represented the constraints. 

𝑃𝑃 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢�𝑣𝑣1, …𝑣𝑣𝑝𝑝� = {𝑞𝑞 ∈ ℝ3|                             (1) 

𝑞𝑞 =  �𝜆𝜆𝑖𝑖𝑣𝑣𝑖𝑖

𝑝𝑝

𝑖𝑖=1

∀𝜆𝜆𝑖𝑖 ∈ [0, 1] 𝑤𝑤𝑤𝑤𝑤𝑤ℎ�𝜆𝜆𝑖𝑖

𝑝𝑝

𝑖𝑖=1

= 1} 

• H-representation- based on the intersection of half spaces. The 
inequalities in Eq. (2) describes the half space, where 𝐴𝐴 ∈
 ℝ𝑚𝑚𝑚𝑚3 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏 ∈  ℝ𝑚𝑚. 

𝑃𝑃 = {𝑞𝑞 ∈ ℝ3| 𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏}                                    (2) 
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 The following subsection, in Algorithm 2, the importance of these two 
representations is emphasized. A conversion between them is required (from 
V-representation to H-representation) when it is needed to test if two polyhedral 
are intersected, e.g., a section of the discretized environment, denoted as a cell, 
with the dynamic obstacle. 
 

2.1. Mathematical Model of a Quadcopter 
  

The first prerequisite in regards to a collision free trajectory for an UAV 
is represented by analysing the physics of the drone. First, the mathematical 
model of a quadcopter was proposed in (Huștiu et al., 2018). The current section 
provides more details regarding the construction of it. The model contributes to 
understand the kinematics and dynamics of a drone, by studying the physical laws 
and forces applied for its motion. For this reason, a particular type of drone was 
selected for this analysis, represented by a quadcopter (Fig. 2). 
 The mathematical model was computed based on Newton-Euler 
equations, which considers the following assumptions about the drone: rigid 
symmetrical body, constant mass, and the Center of Gravity (CoG) is positioned 
in the middle of the symmetrical structure. These assumptions help in 
simplifying the mathematical model of the quadcopter. Fig. 2 presents both the 
inertial and body frames, essential for expressing the states of this system in the 
inertial frame. For this reason, several rotational transformations of the 
coordinates are computed, captured in the following equations. 
 

 
Fig. 2 – Inertial frame (left) and body frame (right). 

 
 Eq. (3) describes the nonlinear mathematical model of the quadcopter, 
based on several inputs: 

• basic movements of an UAV, such as: thrust (the force necessary to lift 
the drone from the ground) and orientation around each axis (roll, pitch 
and yaw). 

• force and momentum equilibrium.  
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 (3) 

  
The first six states represent the pose of the quadcopter: x, y, z for 

positions, and roll ϕ, pitch θ and yaw ψ angles for orientation. The next six 
states captures the linear u, v, w and angular p, q, r velocities. Other notations 
used and observed in Eq. (3) are: 𝑠𝑠𝑥𝑥 = sin(x), 𝑐𝑐𝑥𝑥= cos(x), 𝑡𝑡𝑥𝑥 = tg(x), m – mass of 
quadcopter, g – gravitational accelearation, 𝐼𝐼𝑥𝑥𝑥𝑥, 𝐼𝐼𝑦𝑦𝑦𝑦 , 𝐼𝐼𝑧𝑧𝑧𝑧  – moments of inertia 
around each axis. 

The generic inputs of a quadcopter depend on the angular velocity of 
each rotor 𝜔𝜔𝑖𝑖, where i=1,4����, in different combinations, based on the required 
movement. In order to describe these inputs, visualized in Eq. (4), three 
coefficients were defined: CT – thrust coefficient, CD – drag coefficient, d – arm 
length of the quadcopter: 
 

⎩
⎪
⎨

⎪
⎧𝑈𝑈1 =  𝐶𝐶𝑇𝑇(𝜔𝜔12 + 𝜔𝜔2

2 + 𝜔𝜔3
2 + 𝜔𝜔42)

𝑈𝑈2 =  𝑑𝑑𝑑𝑑𝑇𝑇√2(−𝜔𝜔12 − 𝜔𝜔2
2 + 𝜔𝜔3

2 + 𝜔𝜔42)
𝑈𝑈3 =  𝑑𝑑𝑑𝑑𝑇𝑇√2(−𝜔𝜔12 +𝜔𝜔2

2 + 𝜔𝜔3
2 − 𝜔𝜔42)

𝑈𝑈4 =  𝐶𝐶𝐷𝐷(−𝜔𝜔12 + 𝜔𝜔2
2 − 𝜔𝜔3

2 +  𝜔𝜔42)

                         (4) 

 
This mathematical nonlinear model with 12 states was developed in 

Matlab – Simulink and validated in real experiments in open loop (Fig. 3), by 
considering the same input in both cases and the numerical coefficients of the 
nano-quadcopter Crazyflie 2.0. The input command is represented by the thrust 
force which is given as a 16 bit number, between 0 and 65535. For validation, it 
was assigned the value of thrust force 55000, and afterwards the value 
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decreased to 35000. The graphic from Fig. 3 captures the behavior of drone 
both in simulation and in experimental results (the z position of drone is rising 
for 1.6 seconds, and then decreases). The drone ascends between 0.7 – 1.6 
seconds due to inertia. 

 

 
Fig. 3 – Behavior of position z (experimental results – black points, numerical 

simulation – black line). 
 

As a conclusion, the model validated in real experiments demonstrates a 
good value to the proposed mathematical model. In the next simulation for path 
planning, the drone is assumed omnidirectional, based on its 6 degrees of 
freedom, represented by the linear and angular movement of each axis.  
 

2.2. Mapping the 3D Environment 
  

The second precondition necessary for developing a collision free 
trajectory in a 3D environment with obstacles is given by the mapping of the 
free space. For this purpose, an extension of a classical 2D decomposition 
technique was made for a 3D approach. The decomposition chosen was based 
on rectangular shape type. The main idea of this decomposition is to split 
iteratively the environment into cells until a certain precision is reached ε, these 
being labelled as: occupied if it lies entirely in at least one obstacle, free if it 
does not intersect any obstacle and mixed if is neither free nor occupied. All the 
cells have the same size ratio as the size of the environment because the method 
divides all axis in half for each mixed cell.  
 After the full environment is divided into cells, each free cell becomes a 
node in a graph G, and the edges are given by an adjacency matrix Adj. This 
transformation helps in computing a collision free trajectory, described in the 
next subsection. Two cells i, j, with i≠j, are adjacent if they share a facet in 
common (4 vertices). This definition is relevant only for the 3D approach. In 2D 
decomposition, the relation of adjacency has other definition. Thus, when two 
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cells are adjacent, Adj(i,j) = 1, otherwise Adj(i,j) = 0. For an easier 
understanding of the proposed technique, a pseudocode is presented below: 

 
Algorithm 1 Procedure label_split_cuboid 

 
Input: Current decomposition C, current cuboid bounds 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 ,  
set of obstacles O, volumetric threshold 𝜀𝜀 
Output: Update decomposition C 
1   RC = [𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚] x [𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚] x [𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚] is the current rectangular cuboid 
2   𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   =  ∑ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑅𝑅𝑅𝑅 ∩  𝑂𝑂𝑖𝑖)𝑛𝑛

𝑖𝑖=1  
3    if 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖= 0, then 
4          /* RC is free */ 
5       C = C  ∪  {𝑅𝑅𝑅𝑅}return C 
6  else 
7     if 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 <  𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑅𝑅𝑅𝑅) and (volume(RC) ≤  𝜀𝜀), then 
8        /* RC is mixed and should be split */ 
9        C = label_split_cuboid (C,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑥𝑥𝑚𝑚ax

2
, y𝑚𝑚𝑚𝑚𝑚𝑚 , y𝑚𝑚𝑚𝑚𝑚𝑚 + y𝑚𝑚ax

2
, z𝑚𝑚𝑚𝑚𝑚𝑚 , z𝑚𝑚𝑚𝑚𝑚𝑚 + z𝑚𝑚ax

2
, 𝜀𝜀, O) 

10     C = label_split_cuboid (C,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑥𝑥𝑚𝑚ax

2
, y𝑚𝑚𝑚𝑚𝑚𝑚 + y𝑚𝑚ax

2
, y𝑚𝑚ax, z𝑚𝑚𝑚𝑚𝑚𝑚 , z𝑚𝑚𝑚𝑚𝑚𝑚 + z𝑚𝑚ax

2
, 𝜀𝜀, O) 

11     C = label_split_cuboid (C,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑥𝑥𝑚𝑚ax

2
, 𝑥𝑥𝑚𝑚ax, y𝑚𝑚𝑚𝑚𝑚𝑚 , y𝑚𝑚𝑚𝑚𝑚𝑚 + y𝑚𝑚ax

2
, z𝑚𝑚𝑚𝑚𝑚𝑚 , z𝑚𝑚𝑚𝑚𝑚𝑚 + z𝑚𝑚ax

2
, 𝜀𝜀, O) 

12     C = label_split_cuboid (C,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑥𝑥𝑚𝑚ax

2
, 𝑥𝑥𝑚𝑚ax, y𝑚𝑚𝑚𝑚𝑚𝑚 + y𝑚𝑚ax

2
, y𝑚𝑚ax, z𝑚𝑚𝑚𝑚𝑚𝑚 , z𝑚𝑚𝑚𝑚𝑚𝑚 + z𝑚𝑚ax

2
, 𝜀𝜀, O) 

13     C = label_split_cuboid (C,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑥𝑥𝑚𝑚ax

2
, y𝑚𝑚𝑚𝑚𝑚𝑚, y𝑚𝑚𝑚𝑚𝑚𝑚 + y𝑚𝑚ax

2
, z𝑚𝑚𝑚𝑚𝑚𝑚 + z𝑚𝑚ax

2
, z𝑚𝑚ax, 𝜀𝜀, O) 

14     C = label_split_cuboid (C,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑥𝑥𝑚𝑚ax

2
, y𝑚𝑚𝑚𝑚𝑚𝑚 + y𝑚𝑚ax

2
, y𝑚𝑚ax, z𝑚𝑚𝑚𝑚𝑚𝑚 + z𝑚𝑚ax

2
, z𝑚𝑚ax, 𝜀𝜀, O) 

15     C = label_split_cuboid (C,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑥𝑥𝑚𝑚ax

2
, 𝑥𝑥𝑚𝑚ax, y𝑚𝑚𝑚𝑚𝑚𝑚 , y𝑚𝑚𝑚𝑚𝑚𝑚 + y𝑚𝑚ax

2
, z𝑚𝑚𝑚𝑚𝑚𝑚 + z𝑚𝑚ax

2
, z𝑚𝑚ax, 𝜀𝜀, O) 

16     C = label_split_cuboid (C,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑥𝑥𝑚𝑚ax

2
, 𝑥𝑥𝑚𝑚ax, y𝑚𝑚𝑚𝑚𝑚𝑚 + y𝑚𝑚ax

2
, y𝑚𝑚ax, , z𝑚𝑚𝑚𝑚𝑚𝑚 + z𝑚𝑚ax

2
, z𝑚𝑚ax, 𝜀𝜀, O) 

17   else 
18       /* RC is either occupied, or mixed but too small */ 
19       return C 

 
The inputs required for this procedure are the set of obstacles O, the 

precision ε – impacting the size of the cells, the boundary of the environment 
and the set of cells C, which in the beginning is empty. The output of the 
procedure returns the updated set of cells C, due to the recursive process. In line 
2 is computed the intersection of the environment RC considered as the first cell 
in the set C with each obstacle 𝑂𝑂𝑖𝑖, i=1,𝑛𝑛�����, by using H-representation. If this 
intersection is empty, then the cell is not divided furthermore (lines 3-5). On the 
other hand, if the current cell intersects at least one obstacle (line 7), the cell is 
labeled as mixed and is further split into 8 smaller and equal cuboids by cutting 
in half each axis, until a certain precision ε is reached (lines 8-18).  

 
3. Collision Free Trajectory 

  
This section is dedicated to the collision free trajectory algorithm 

proposed for this paper, based on the work captured in (Huștiu et al., 2020), 
considering another environment scenario with different numerical values for 
the result part. Based on the previously presented prerequisites, two different 
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trajectories were computed. The first one considers only the static environment, 
denoted with StatTraj, while the seconds one considers the movement of the 
dynamic obstacle, trajectory denoted with DynTraj. The latter trajectory is able 
to avoid the collision with DynTraj. Therefore, these two paths represent the 
output of the proposed algorithm.  
 In Algorithm 2, the first focus is directed towards StatTraj. Lines 2-9 
includes the correlation between the set of free cells C and graph G mentioned 
in subsection 2.2. The environment is decomposed into cells, and the adjacency 
matrix is computed based on the verification illustrated in lines 4-7. For this 
reason, the intersection between two cells is converted from a H-representation 
to a V-representation and it is checked if two cuboids i, j, with i≠j, have four 
vertices in common. If this condition is true (line 7), then the value for Adj(i,j) 
is modified to 1 and the centroid of the common facet is saved in 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖,𝑗𝑗. 
The path is computed by the union of these waypoints, together with the start 
and goal position. 
 The next step consists in finding the cells which includes the starting 
and the goal position given as inputs for the drone (line 10). Based on these 
points, together with the graph G corresponding to the environment model, 
Dijkstra algorithm is applied for computing the minimum path (line 11). The 
returned cells of the procedure shortest_path, are translated into way points, 
expressing the positions in which the drone is allow to evolve into 3D space 
towards the goal position (lines 12-15). 
 The second part of the path planning algorithm concentrates on 
computing the trajectory denoted with DynTraj. For this reason, the global time 
Time is considered in the execution of the algorithm, together with a defined 
sample time 𝑇𝑇𝑠𝑠 . These impact the estimation for the location of DObat each 
moment in time 𝑇𝑇𝑠𝑠, based on its direction 𝑑𝑑𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷 and its velocity 𝑣𝑣𝑣𝑣𝑣𝑣𝐷𝐷𝐷𝐷𝐷𝐷. This 
estimation can be visualized on line 23. In order to develop the trajectory for the 
dynamic environment, the mapping of the workspace needs to be updated at 
each moment in time 𝑇𝑇𝑠𝑠 . Therefore, the cells which intersect the dynamic 
obstacle are inhibited (lines 24-25). This way, the drone has the information that 
those cells will be avoided and will not be considered in path planning 
algorithm. The collision avoidance is verified by computing the distance 
between each cell and the current position of the dynamic obstacles 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷,𝑅𝑅𝐶𝐶𝑖𝑖, 
with i=1, |𝑅𝑅𝑅𝑅|��������� . If this distance is smaller or equal with the sum between 
diagonal of DOb and diagonal of the current cell 𝑅𝑅𝑅𝑅𝑖𝑖, then the movement of the 
DOb intersects the current cell. As a result, the input transitions to that cell are 
inhibited, thus forbidding the drone to pass through it.  

Based on the same search graph Dijkstra algorithm, the sequence of 
cells of DynTraj are returned. The method used for this approach is updating 
iteratively. In the lines 29-34 is described the construction of DynTraj when the 
time to reach the desired position is smaller than the considered global time. On 
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the lines 35-38 is expressed the path planning when the dynamic obstacle leaves 
the limits of the environment, and the drone hasn’t arrived at the goal position. 
 

 
Algorithm 2 Cell decomposition planning 

 
Input: Environment E, obstacles O, precision E, Drone velocity velDrone, initial and goal 
positions (x0,y0,z0)T, (xg,yg,zg)T, Dynamic Object DOb, Dynamic Object velocity velDOb, 
Dynamic Object direction dirDOb, Sample time Ts 
Output: Free cells C, graph G, drone static trajectory StatTraj, drone dynamic trajectory 
 DynTraj 
1   C = label split cuboid(E,𝜀𝜀,O) 
2   Graph G = (N,Adj), with nodes N = {1,2, . . . ,|C|} 
3    Adj = 0|C|×|C|; 
4   for RCi, RCj ∈ C, i/=j do 

5       𝐈𝐈𝐈𝐈𝐈𝐈𝐢𝐢,𝐣𝐣  =  �𝒒𝒒 ∈  𝐑𝐑𝟑𝟑|  �
𝐀𝐀𝐑𝐑𝐑𝐑𝐢𝐢
𝐀𝐀𝐑𝐑𝐑𝐑𝐣𝐣

� 𝐪𝐪 ≤ �
𝐛𝐛𝐑𝐑𝐑𝐑𝐢𝐢
𝐛𝐛𝐑𝐑𝐑𝐑𝐣𝐣

�� 

6      Convert Inti,j to V-representation VInti,j 
7      if |VInti,j| = 4 then 
8              Adj(i,j) = 1 
9         W aypointi,j = centroid(VInti,j) 

10  Find indexes start, stop ∈ N such that (x0,y0,z0)T∈ R Cstart,(xg,yg,zg)T ∈ RCstop 
11  Stat_ Cell_ Seq = shortest path(G, Adj, RCstart, RCstop) 
12  Denote Stat_ Cell_ Seq = {RC0,RC1 , . . . ,RCni} 
13  StatT raj = (x0,y0,z0)T 
14  Append W aypointi,i+1 to StatT raj, ∀i=0, . . . ,ni−1 
15  Append (xg,yg,zg)T to StatT raj 
 
16  Let finaltime be the time moment when obstacle Dob leaves environment E 
17  T ime = {0,Ts,2∗Ts, . . . , f inaltime} 
18  Initialize Adjt = Adj, ∀ t∈T ime 
19  Denote with Obst the vertices of Dob at time instant t and with Obs centert its center 
20  DynT raj = (x0,y0,z0)T (current drone position) 
21  for t ∈ T ime do 
22         if t >0 then 
23 Obs_ centert = Obs_ centert−1+dirDOb∗velDOb∗Ts 

24         for RCi ∈ C such that RCi∩ Obst ≠ ∅ do 
25 Adjt(:,i) = 0 
26         Let RCcurrent be the cell containing the drone at time t 
27         Dyn_Cell_Seq = shortest path(G, Adjt, RCcurrent, RCstop) 
28         Denote Dyn_Cell_Seq={RCt1,RCt2, . . . ,RCtn} 
29 if t+Ts<finaltime then 
30             Move drone with speed velDrone along trajectory linking the current position 
 with W aypointti,ti+1     where i=1,2 , . . .until time moment t+Ts or until cell RCstop is reached 
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31 Append W aypointti,ti+1  to DynT raj 
32 if RCstop was reached then 
33                    Append (xg,yg,zg)T to DynT raj 
34                    Return 
35          else 
36                    Move drone with speed velDrone along trajectory linking the current position 

 with W aypointti,ti+1, where i=1,2 , . . .  
37   Append W aypointti,ti+1  to Dyn T raj 
38   Append (xg,yg,zg)T to Dyn T raj 

 
  

The method described in this subsection has a good base for an offline 
path planning algorithm, the idea being based on the model predictive control 
strategy, by examine the case with the look-ahead horizon of 𝑇𝑇𝑠𝑠. By predicting 
the position of the dynamic obstacle for each 𝑇𝑇𝑠𝑠 moment based on its direction 
and velocity, the drone would know the forbidden cells in a selected future 
horizon. At the end, the drone could optimize the returned trajectory, based on 
the remaining free space and the selected future horizon. 

 
4. Simulation Results 

  
The evaluation of the proposed algorithm in regards to path planning for 

a drone, was done in MATLAB simulations, implemented on a mobile 
computer unit with Intel® Core™ i7-8750H CPU @ 2.20Ghz and 8GB RAM.  
 Let us consider a 3D environment with size 80 x 50 x 100 length unit 
(denoted as lu), visualized in Fig. 1, with 6 convex polyhedral static obstacles 
with flat base, simulating a city scenario. As mentioned previously, the first step 
for the path planning algorithm is represented by the mapping of the free space. 
Using a precision ε = 16, the assumed workspace was divided into 764 free 
cuboids in 2.97 seconds, as it can be seen in Fig. 4. 

 
Fig. 4 – Rectangular cuboid decomposition for an environment with 6 static obstacles. 
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 The size of the dynamic obstacle is 7 x 5 x 3 lu, moving with the velocity 
𝑣𝑣𝑣𝑣𝑣𝑣𝐷𝐷𝐷𝐷𝐷𝐷 = 9 lu/s. On the other hand, the drone has the velocity 𝑣𝑣𝑣𝑣𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 8 lu/s, 
departing from the initial position (20,  40,  25)𝑇𝑇 , having the desired goal 
position with the coordinates (50, 37, 73)𝑇𝑇 . For the iterative update of the 
environment model (consist in inhibiting the forbidden cells), it was considered 
𝑇𝑇𝑠𝑠 = 0.1 seconds. The Fig. 5 depicts the returned trajectories based on the 
algorithm presented in this paper. With black color is represented StatTraj – 
trajectory computed for the static environment and with green color is represented 
DynTraj – trajectory which considers the movement of the dynamic obstacles. 

Through simulation it was observed that even though StatTraj reaches the 
goal position, after 4 seconds a collision occurs with the dynamic obstacles in the 
point with coordinates (27.5,  37.5,  59.38)𝑇𝑇.The collision is illustrated in Fig. 5. 
For a better visualization of this scenario, the reader can examine the animations 
in the suggested video, where additional numerical simulation was considered: 
https://www.youtube.com/watch?v=tZfjdH3Sf2U&ab_channel=LoRISwork. 

 

 
Fig. 5 – Drone trajectories (DynTraj with green, StatTraj with black) in dynamic 
environment. Collision avoidance between StatTraj with Dob (red dashed line). 

 
Comparing the performances between these 2 trajectories, it was 

observed that the length of StatTraj is 62.53 lu with 8 changes of direction (or 
in other words, the drone traverse 8 cells to reach its destination) and the length 
of DynTraj is 68.04 lu with 9 changes of direction, therefore StatTraj has a 
smaller trajectory. Since in the calculation of DynTraj the map of the 
environment is updated at each sample time, the run time is longer compared 
with the run time for computing StatTraj (5.43 seconds, respectively 3.88 

https://www.youtube.com/watch?v=tZfjdH3Sf2U&ab_channel=LoRISwork
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seconds). Nevertheless, the trajectory of StatTraj is only a hypothetical one in 
the context of dynamic 3D environment. 

 
5. Conclusions 

  
To conclude, this paper contains the preconditions necessary to develop 

a piece-wise collision free trajectory in a known 3D environment, with static 
and dynamic obstacles. The first prerequisite captures the analysis of kinematics 
and dynamics of a quadcopter, by modeling it with a mathematical nonlinear 
representation of 12 states. This model was validated in real time experiments, 
using nano quadcopter Crazyflie 2.0. The second prerequisite presented here 
assumes the mapping of a 3D environment based on a rectangular cuboid 
representation. Considering this mapping and the known movement of the 
dynamic obstacle which evolves in this workspace, the proposed algorithm 
generates effectively collision free trajectories for the drone, in both scenarios: 
static and dynamic spaces.  
 Future work will consider movement of a team of drones in a 3D 
environment, maintaining the idea of collision avoidance between them, 
necessary in achieving one mission for the entire team. 
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CERCETĂRI ASUPRA DEZVOLTĂRII UNEI TRAIECTORII FĂRĂ COLIZIUNE 
ÎNTR-UN SPAȚIU DE LUCRU 3D DINAMIC PENTRU UN UAV 

 
(Rezumat) 

 
Această lucrare științifică prezintă principalii pași în vederea dezvoltării unei 

traiectorii fără coliziune pentru o dronă. Obiectivul principal este atingerea unei poziții 
finale, într-un spațiu de lucru cu obstacole dinamice. Primul deziderat este caracterizat 
de examinarea cinematicii și a dinamicii unui quadcopter. Pentru acest scop, un model 
matematic neliniar a fost construit. Validarea modelului matematic a fost realizată în 
MATLAB prin intermediul simulărilor, pentru ca după să poată fi validat și prin 
experimente reale. Al doilea obiectiv presupune maparea spațiului de lucru 3D. Pentru 
acest obiectiv, a fost implementată o reprezentare bazată pe tehnica decompoziției 
celulare, extinsă din mediul 2D. Evaluarea algoritmului de planificare a traiectoriei s-a 
realizat prin diferite simulări numerice în diverse scenarii. La sfârșit, o comparație între 
2 scenarii diferite este prezentată: pentru un spațiu de lucru 3D doar cu obstacole statice 
și pentru un spațiu de lucru 3D dinamic, unde mișcarea obiectului dinamic este 
cunoscută. 
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