
BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI
Publicat de

Universitatea Tehnică „Gheorghe Asachi” din Iaşi
Volumul 67 (71), Numărul 2, 2021

Secţia
ELECTROTEHNICĂ. ENERGETICĂ. ELECTRONICĂ

DOI:10.2478/bipie-2021-0012

PREREQUISITES TO DESIGN A COLLISION FREE
TRAJECTORY IN A

3D DYNAMIC ENVIRONMENT FOR AN UAV

BY

SOFIA HUŞTIU1,2,∗

1“Gheorghe Asachi” Technical University of Iasi,
Faculty of Automatic Control and Computer Engineering

2University of Zaragoza, Spain
Engineering Research Institute of Aragon (I3A)

Received: October 11, 2021
Accepted for publication: December 5, 2021

Abstract. This research presents the main steps needed for designing a

piece-wise linear trajectory which grants an unmanned aerial vehicle (UAV) to
reach a destination pose in a workspace with dynamic obstacles. The first
objective is characterized by the examination of kinematics and dynamics of a
quadcopter. For this purpose, a nonlinear mathematical model was developed.
The validation of the mathematical model was confirmed by MATLAB and real
time experiments. The second step aims to properly map the 3D environment.
For this objective, an algorithm for a cuboid rectangular decomposition was
developed and implemented, by extending a 2D decomposition technique. The
evaluation of the proposed path planning algorithm occurred for different
scenarios and the validation of the results was established through numerical
simulations. In the end, a comparison for two path planning scenarios is shown:
for a 3D static environment and for a 3D dynamic environment, where the
movement of a dynamic obstacle is known.

Keywords: path planning; unmanned aerial vehicle; dynamic environment;
cell decomposition.

∗Corresponding author; e-mail: sofia.hustiu@academic.tuiasi.ro
© 2021 Sofia Huştiu
This is an open access article licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

66 Sofia Huștiu

1. Introduction

In the last years, Unmanned Aerial Vehicles (UAVs), also known as

drones, have been used frequently in different applications such as military and
surveillance, aerial photography, mapping the environment, and entertainment
domain, e.g., drone racing. All these applications have in common the
understanding of kinematic and dynamic of drone. This is mandatory for a
collision free path planning.

One challenge in 3D path planning with UAVs is represented by
studying their dynamic. This is a complex problem, caused by the presence of
six degrees of freedom of the drone. In this work, we have analyzed this
problem by selecting a particular type of drone: quadcopter. After this study, the
next step is captured by developing a control law for the trajectory. Several
papers tackle issue (Gheorghiță et al., 2015; Tagay et al., 2021). In (Grieff,
2017) is described a control planning method for a nano quadcopter Crazyflie.
Analyzing the latter paper, we developed a mathematical model for Crazyflie
2.0, which was validated in real indoor workspace. This contribution defines the
first prerequisite described in our work.

Another critical topic is defined by a collision free trajectory for the
UAV, independent of the 3D space: static or dynamic. The collision free
techniques can be based on classical approaches, e.g., Rapidly Exploring
Random Trees (RRT) (Yao et al. 2015), Voronoi partitioning (Fang et al.,
2017), Artificial potential (Liu et al., 2016), or based on particular approaches,
e.g., (Goel et al., 2018) - using an optimal flight routine in real environments,
(Paranjape et al., 2015) - considers a time-delay for 3D circular path combined
with aggressive turn-around maneuvers (ATA).

Other methods are represented by swarm intelligence algorithms,
simulating the nature’s behavior, e.g., (Duan et al., 2014) – based on pigeon
behavior, (Ge et al., 2020) – based on fruit fly behavior. A different technique is
represented by discrete models e.g., using Petri Net Toolbox in MATLAB
(Păstrăvanu et al., 2004). In (Mahulea et al., 2018) the authors used Petri Net
model the movements of a team of mobile robots, given a Boolean-based
specification.

The collision free path is especially difficult to be acquired in dynamic
environments, especially when the movement of the obstacles is uncertain.
Usually, the UAV requires an accurate localization in the 3D space, the on-
board sensors must be quick enough to detect and to monitor the movements in
its surroundings, and the actuators should act fast to avoid the obstacles, based
on a robust control law algorithm. Therefore, the complexity for this problem is
increased. The work from this paper captures the study on a collision free
trajectory in a known environment, this representing the second prerequisite for
the UAV path planning area. We assume that this study will give us a valuable

Bul. Inst. Polit. Iaşi, Vol. 67 (71), Nr. 2, 2021 67

base of knowledge, before tackling the collision avoidance topic in dynamic and
uncertain environments.

In the given context, the purpose of this paper is to present the main
steps which are necessary to develop a collision free trajectory for an UAV
from an initial to a desired final point, evolving in a dynamic 3D environment.
The movement of the dynamic obstacle is assumed to be known. This work
combines the results from (Huștiu et al., 2018; Lupașcu et al., 2019, Huștiu et
al., 2020), adding new examples, explications and interpretations. The benefit
of these precondition is evaluated through numerical simulations, by achieving
a collision free trajectory in a known dynamic workspace.

The next section describes the prerequisites for a piece-wise trajectory,
divided into two parts: computation of a mathematical model for a quadcopter
and mapping the 3D workspace to allow the drone to evolve in a dynamic
space. The section 3 emphasizes the algorithm used for path planning, and
section 4 captures the results of the proposed algorithm, visualized through
numerical simulations. Also, a comparison between two different trajectories is
commented (one trajectory considers only the static environment and the second
trajectory considers the movement of the dynamic obstacle, thus being able to
avoid the collision with it). At the end, the conclusions are presented in section 5.

2. Prerequisites for a 3D Trajectory

This section describes the prerequisites necessary to develop a piece-
wise linear trajectory for an omnidirectional drone in a dynamic known
environment. For this reason, the problem formulation is defined, alongside
with several mathematical notations used throughout this paper.

This work includes a comparison between two UAV paths, in
different scenarios: static and dynamic. For this reason, let us consider
first a 3D environment in a shape of a rectangular cuboid with fixed
limits, denoted as 𝐸𝐸 = [𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚]𝑥𝑥[𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚]𝑥𝑥[𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚, 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚] , with
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚, 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 ∈ ℝ . The environment contains n static
obstacles (represented with purple color), having flat polygonal facets and flat
base (z = 0). The obstacles are characterized as a convex and bounded
polyhedron, defined in the set 𝑂𝑂 = {𝑂𝑂1,𝑂𝑂2, …𝑂𝑂𝑛𝑛} . Fig. 1 illustrates a
representation of the defined 3D space, including an initial position
(𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0)𝑇𝑇 ∈ ℝ3 (red circle) and a desired final position �𝑥𝑥𝑔𝑔,𝑦𝑦𝑔𝑔, 𝑧𝑧𝑔𝑔�

𝑇𝑇 ∈ ℝ3
(blue star). In addition to this specified environment, one dynamical is defined
𝐷𝐷𝐷𝐷𝐷𝐷 = �𝑥𝑥𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑥𝑥𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚�𝑥𝑥 �𝑦𝑦𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑦𝑦𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚�𝑥𝑥�𝑧𝑧𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑧𝑧𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚� , with
𝑥𝑥𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑦𝑦𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑦𝑦𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑧𝑧𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑧𝑧𝐷𝐷𝐷𝐷𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 ∈ ℝ. The shape of it is
pictured as a rectangular parallelepiped (orange color) and the movement is
represented with the orange dashed line, depicted in Fig. 1. The velocity of the
dynamic obstacle is denoted with 𝑣𝑣𝑣𝑣𝑙𝑙𝐷𝐷𝐷𝐷𝐷𝐷 and the direction is given by 𝑑𝑑𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷.

68 Sofia Huștiu

In both scenarios, the drone evolves with a constant velocity, denoted
as 𝑣𝑣𝑣𝑣𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.

Fig. 1 – Environment E with static obstacles (purple), initial position of DOb (orange)

and movement direction (dashed orange line).

 The mathematical description of a 3D convex polyhedral is essential for
the proposed path planning algorithm. Therefore, two representations are given,
as follows:

• V-representation- based on the coordinates of the vertices which
describes the shape. P denotes the convex hull of the vertices (Eq. (1)).
This representation is valid only when the number of vertices is at least
equal with three. With 𝜆𝜆𝑖𝑖 ∈ [0, 1] was represented the constraints.

𝑃𝑃 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢�𝑣𝑣1, …𝑣𝑣𝑝𝑝� = {𝑞𝑞 ∈ ℝ3| (1)

𝑞𝑞 = �𝜆𝜆𝑖𝑖𝑣𝑣𝑖𝑖

𝑝𝑝

𝑖𝑖=1

∀𝜆𝜆𝑖𝑖 ∈ [0, 1] 𝑤𝑤𝑤𝑤𝑤𝑤ℎ�𝜆𝜆𝑖𝑖

𝑝𝑝

𝑖𝑖=1

= 1}

• H-representation- based on the intersection of half spaces. The
inequalities in Eq. (2) describes the half space, where 𝐴𝐴 ∈
 ℝ𝑚𝑚𝑚𝑚3 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏 ∈ ℝ𝑚𝑚.

𝑃𝑃 = {𝑞𝑞 ∈ ℝ3| 𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏} (2)

Bul. Inst. Polit. Iaşi, Vol. 67 (71), Nr. 2, 2021 69

 The following subsection, in Algorithm 2, the importance of these two
representations is emphasized. A conversion between them is required (from
V-representation to H-representation) when it is needed to test if two polyhedral
are intersected, e.g., a section of the discretized environment, denoted as a cell,
with the dynamic obstacle.

2.1. Mathematical Model of a Quadcopter

The first prerequisite in regards to a collision free trajectory for an UAV
is represented by analysing the physics of the drone. First, the mathematical
model of a quadcopter was proposed in (Huștiu et al., 2018). The current section
provides more details regarding the construction of it. The model contributes to
understand the kinematics and dynamics of a drone, by studying the physical laws
and forces applied for its motion. For this reason, a particular type of drone was
selected for this analysis, represented by a quadcopter (Fig. 2).
 The mathematical model was computed based on Newton-Euler
equations, which considers the following assumptions about the drone: rigid
symmetrical body, constant mass, and the Center of Gravity (CoG) is positioned
in the middle of the symmetrical structure. These assumptions help in
simplifying the mathematical model of the quadcopter. Fig. 2 presents both the
inertial and body frames, essential for expressing the states of this system in the
inertial frame. For this reason, several rotational transformations of the
coordinates are computed, captured in the following equations.

Fig. 2 – Inertial frame (left) and body frame (right).

 Eq. (3) describes the nonlinear mathematical model of the quadcopter,
based on several inputs:

• basic movements of an UAV, such as: thrust (the force necessary to lift
the drone from the ground) and orientation around each axis (roll, pitch
and yaw).

• force and momentum equilibrium.

70 Sofia Huștiu

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑥̇𝑥
𝑦̇𝑦
𝑧̇𝑧
𝜓̇𝜓
𝜃̇𝜃
𝜙̇𝜙
𝑢̇𝑢
𝑣̇𝑣
𝑤̇𝑤
𝑟̇𝑟
𝑞̇𝑞
𝑝̇𝑝 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑤𝑤�𝑠𝑠𝜓𝜓𝑠𝑠𝜙𝜙 + 𝑐𝑐𝜓𝜓𝑐𝑐𝜙𝜙𝑠𝑠𝜃𝜃� − 𝑣𝑣�𝑠𝑠𝜓𝜓𝑐𝑐𝜙𝜙 − 𝑐𝑐𝜓𝜓𝑠𝑠𝜙𝜙𝑠𝑠𝜃𝜃� + 𝑢𝑢𝑐𝑐𝜓𝜓𝑐𝑐𝜃𝜃
𝑣𝑣�𝑐𝑐𝜓𝜓𝑐𝑐𝜙𝜙 + 𝑠𝑠𝜓𝜓𝑠𝑠𝜙𝜙𝑠𝑠𝜃𝜃� − 𝑤𝑤�𝑐𝑐𝜓𝜓𝑠𝑠𝜙𝜙 − 𝑠𝑠𝜓𝜓𝑐𝑐𝜙𝜙𝑠𝑠𝜃𝜃� + 𝑢𝑢𝑠𝑠𝜓𝜓𝑐𝑐𝜃𝜃

𝑤𝑤𝑐𝑐𝜃𝜃𝑐𝑐𝜙𝜙 − 𝑢𝑢𝑠𝑠𝜃𝜃 + 𝑣𝑣𝑠𝑠𝜙𝜙𝑐𝑐𝜃𝜃
𝑝𝑝 + 𝑟𝑟𝑐𝑐𝜙𝜙𝑡𝑡𝜃𝜃 + 𝑞𝑞𝑠𝑠𝜙𝜙𝑡𝑡𝜃𝜃

𝑞𝑞𝑐𝑐𝜙𝜙 − 𝑟𝑟𝑠𝑠𝜙𝜙

𝑟𝑟
𝑐𝑐𝜙𝜙
𝑐𝑐𝜃𝜃

+ 𝑞𝑞
𝑠𝑠𝜙𝜙
𝑐𝑐𝜃𝜃

𝑟𝑟𝑟𝑟 − 𝑞𝑞𝑞𝑞 + 𝑔𝑔𝑠𝑠𝜃𝜃
𝑝𝑝𝑝𝑝 − 𝑟𝑟𝑟𝑟 − 𝑔𝑔𝑠𝑠𝜙𝜙𝑐𝑐𝜃𝜃

𝑞𝑞𝑞𝑞 − 𝑝𝑝𝑝𝑝 +
𝑈𝑈1
𝑚𝑚
− 𝑔𝑔𝑐𝑐𝜃𝜃𝑐𝑐𝜙𝜙

𝑈𝑈2 + 𝑝𝑝𝑝𝑝(𝐼𝐼𝑥𝑥𝑥𝑥 − 𝐼𝐼𝑦𝑦𝑦𝑦)
𝐼𝐼𝑧𝑧𝑧𝑧

𝑈𝑈3 + 𝑝𝑝𝑝𝑝(𝐼𝐼𝑧𝑧𝑧𝑧 − 𝐼𝐼𝑥𝑥𝑥𝑥)
𝐼𝐼𝑦𝑦𝑦𝑦

𝑈𝑈4 + 𝑝𝑝𝑝𝑝(𝐼𝐼𝑧𝑧𝑧𝑧 − 𝐼𝐼𝑦𝑦𝑦𝑦)
𝐼𝐼𝑥𝑥𝑥𝑥 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3)

The first six states represent the pose of the quadcopter: x, y, z for

positions, and roll ϕ, pitch θ and yaw ψ angles for orientation. The next six
states captures the linear u, v, w and angular p, q, r velocities. Other notations
used and observed in Eq. (3) are: 𝑠𝑠𝑥𝑥 = sin(x), 𝑐𝑐𝑥𝑥= cos(x), 𝑡𝑡𝑥𝑥 = tg(x), m – mass of
quadcopter, g – gravitational accelearation, 𝐼𝐼𝑥𝑥𝑥𝑥, 𝐼𝐼𝑦𝑦𝑦𝑦 , 𝐼𝐼𝑧𝑧𝑧𝑧 – moments of inertia
around each axis.

The generic inputs of a quadcopter depend on the angular velocity of
each rotor 𝜔𝜔𝑖𝑖, where i=1,4����, in different combinations, based on the required
movement. In order to describe these inputs, visualized in Eq. (4), three
coefficients were defined: CT – thrust coefficient, CD – drag coefficient, d – arm
length of the quadcopter:

⎩
⎪
⎨

⎪
⎧𝑈𝑈1 = 𝐶𝐶𝑇𝑇(𝜔𝜔12 + 𝜔𝜔2

2 + 𝜔𝜔3
2 + 𝜔𝜔42)

𝑈𝑈2 = 𝑑𝑑𝑑𝑑𝑇𝑇√2(−𝜔𝜔12 − 𝜔𝜔2
2 + 𝜔𝜔3

2 + 𝜔𝜔42)
𝑈𝑈3 = 𝑑𝑑𝑑𝑑𝑇𝑇√2(−𝜔𝜔12 +𝜔𝜔2

2 + 𝜔𝜔3
2 − 𝜔𝜔42)

𝑈𝑈4 = 𝐶𝐶𝐷𝐷(−𝜔𝜔12 + 𝜔𝜔2
2 − 𝜔𝜔3

2 + 𝜔𝜔42)

 (4)

This mathematical nonlinear model with 12 states was developed in

Matlab – Simulink and validated in real experiments in open loop (Fig. 3), by
considering the same input in both cases and the numerical coefficients of the
nano-quadcopter Crazyflie 2.0. The input command is represented by the thrust
force which is given as a 16 bit number, between 0 and 65535. For validation, it
was assigned the value of thrust force 55000, and afterwards the value

Bul. Inst. Polit. Iaşi, Vol. 67 (71), Nr. 2, 2021 71

decreased to 35000. The graphic from Fig. 3 captures the behavior of drone
both in simulation and in experimental results (the z position of drone is rising
for 1.6 seconds, and then decreases). The drone ascends between 0.7 – 1.6
seconds due to inertia.

Fig. 3 – Behavior of position z (experimental results – black points, numerical

simulation – black line).

As a conclusion, the model validated in real experiments demonstrates a
good value to the proposed mathematical model. In the next simulation for path
planning, the drone is assumed omnidirectional, based on its 6 degrees of
freedom, represented by the linear and angular movement of each axis.

2.2. Mapping the 3D Environment

The second precondition necessary for developing a collision free
trajectory in a 3D environment with obstacles is given by the mapping of the
free space. For this purpose, an extension of a classical 2D decomposition
technique was made for a 3D approach. The decomposition chosen was based
on rectangular shape type. The main idea of this decomposition is to split
iteratively the environment into cells until a certain precision is reached ε, these
being labelled as: occupied if it lies entirely in at least one obstacle, free if it
does not intersect any obstacle and mixed if is neither free nor occupied. All the
cells have the same size ratio as the size of the environment because the method
divides all axis in half for each mixed cell.
 After the full environment is divided into cells, each free cell becomes a
node in a graph G, and the edges are given by an adjacency matrix Adj. This
transformation helps in computing a collision free trajectory, described in the
next subsection. Two cells i, j, with i≠j, are adjacent if they share a facet in
common (4 vertices). This definition is relevant only for the 3D approach. In 2D
decomposition, the relation of adjacency has other definition. Thus, when two

72 Sofia Huștiu

cells are adjacent, Adj(i,j) = 1, otherwise Adj(i,j) = 0. For an easier
understanding of the proposed technique, a pseudocode is presented below:

Algorithm 1 Procedure label_split_cuboid

Input: Current decomposition C, current cuboid bounds 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 ,
set of obstacles O, volumetric threshold 𝜀𝜀
Output: Update decomposition C
1 RC = [𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚] x [𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚] x [𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚] is the current rectangular cuboid
2 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑅𝑅𝑅𝑅 ∩ 𝑂𝑂𝑖𝑖)𝑛𝑛

𝑖𝑖=1
3 if 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖= 0, then
4 /* RC is free */
5 C = C ∪ {𝑅𝑅𝑅𝑅}return C
6 else
7 if 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 < 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑅𝑅𝑅𝑅) and (volume(RC) ≤ 𝜀𝜀), then
8 /* RC is mixed and should be split */
9 C = label_split_cuboid (C,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑥𝑥𝑚𝑚ax

2
, y𝑚𝑚𝑚𝑚𝑚𝑚 , y𝑚𝑚𝑚𝑚𝑚𝑚 + y𝑚𝑚ax

2
, z𝑚𝑚𝑚𝑚𝑚𝑚 , z𝑚𝑚𝑚𝑚𝑚𝑚 + z𝑚𝑚ax

2
, 𝜀𝜀, O)

10 C = label_split_cuboid (C,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑥𝑥𝑚𝑚ax

2
, y𝑚𝑚𝑚𝑚𝑚𝑚 + y𝑚𝑚ax

2
, y𝑚𝑚ax, z𝑚𝑚𝑚𝑚𝑚𝑚 , z𝑚𝑚𝑚𝑚𝑚𝑚 + z𝑚𝑚ax

2
, 𝜀𝜀, O)

11 C = label_split_cuboid (C,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑥𝑥𝑚𝑚ax

2
, 𝑥𝑥𝑚𝑚ax, y𝑚𝑚𝑚𝑚𝑚𝑚 , y𝑚𝑚𝑚𝑚𝑚𝑚 + y𝑚𝑚ax

2
, z𝑚𝑚𝑚𝑚𝑚𝑚 , z𝑚𝑚𝑚𝑚𝑚𝑚 + z𝑚𝑚ax

2
, 𝜀𝜀, O)

12 C = label_split_cuboid (C,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑥𝑥𝑚𝑚ax

2
, 𝑥𝑥𝑚𝑚ax, y𝑚𝑚𝑚𝑚𝑚𝑚 + y𝑚𝑚ax

2
, y𝑚𝑚ax, z𝑚𝑚𝑚𝑚𝑚𝑚 , z𝑚𝑚𝑚𝑚𝑚𝑚 + z𝑚𝑚ax

2
, 𝜀𝜀, O)

13 C = label_split_cuboid (C,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑥𝑥𝑚𝑚ax

2
, y𝑚𝑚𝑚𝑚𝑚𝑚, y𝑚𝑚𝑚𝑚𝑚𝑚 + y𝑚𝑚ax

2
, z𝑚𝑚𝑚𝑚𝑚𝑚 + z𝑚𝑚ax

2
, z𝑚𝑚ax, 𝜀𝜀, O)

14 C = label_split_cuboid (C,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑥𝑥𝑚𝑚ax

2
, y𝑚𝑚𝑚𝑚𝑚𝑚 + y𝑚𝑚ax

2
, y𝑚𝑚ax, z𝑚𝑚𝑚𝑚𝑚𝑚 + z𝑚𝑚ax

2
, z𝑚𝑚ax, 𝜀𝜀, O)

15 C = label_split_cuboid (C,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑥𝑥𝑚𝑚ax

2
, 𝑥𝑥𝑚𝑚ax, y𝑚𝑚𝑚𝑚𝑚𝑚 , y𝑚𝑚𝑚𝑚𝑚𝑚 + y𝑚𝑚ax

2
, z𝑚𝑚𝑚𝑚𝑚𝑚 + z𝑚𝑚ax

2
, z𝑚𝑚ax, 𝜀𝜀, O)

16 C = label_split_cuboid (C,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑥𝑥𝑚𝑚ax

2
, 𝑥𝑥𝑚𝑚ax, y𝑚𝑚𝑚𝑚𝑚𝑚 + y𝑚𝑚ax

2
, y𝑚𝑚ax, , z𝑚𝑚𝑚𝑚𝑚𝑚 + z𝑚𝑚ax

2
, z𝑚𝑚ax, 𝜀𝜀, O)

17 else
18 /* RC is either occupied, or mixed but too small */
19 return C

The inputs required for this procedure are the set of obstacles O, the

precision ε – impacting the size of the cells, the boundary of the environment
and the set of cells C, which in the beginning is empty. The output of the
procedure returns the updated set of cells C, due to the recursive process. In line
2 is computed the intersection of the environment RC considered as the first cell
in the set C with each obstacle 𝑂𝑂𝑖𝑖, i=1,𝑛𝑛�����, by using H-representation. If this
intersection is empty, then the cell is not divided furthermore (lines 3-5). On the
other hand, if the current cell intersects at least one obstacle (line 7), the cell is
labeled as mixed and is further split into 8 smaller and equal cuboids by cutting
in half each axis, until a certain precision ε is reached (lines 8-18).

3. Collision Free Trajectory

This section is dedicated to the collision free trajectory algorithm

proposed for this paper, based on the work captured in (Huștiu et al., 2020),
considering another environment scenario with different numerical values for
the result part. Based on the previously presented prerequisites, two different

Bul. Inst. Polit. Iaşi, Vol. 67 (71), Nr. 2, 2021 73

trajectories were computed. The first one considers only the static environment,
denoted with StatTraj, while the seconds one considers the movement of the
dynamic obstacle, trajectory denoted with DynTraj. The latter trajectory is able
to avoid the collision with DynTraj. Therefore, these two paths represent the
output of the proposed algorithm.
 In Algorithm 2, the first focus is directed towards StatTraj. Lines 2-9
includes the correlation between the set of free cells C and graph G mentioned
in subsection 2.2. The environment is decomposed into cells, and the adjacency
matrix is computed based on the verification illustrated in lines 4-7. For this
reason, the intersection between two cells is converted from a H-representation
to a V-representation and it is checked if two cuboids i, j, with i≠j, have four
vertices in common. If this condition is true (line 7), then the value for Adj(i,j)
is modified to 1 and the centroid of the common facet is saved in 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖,𝑗𝑗.
The path is computed by the union of these waypoints, together with the start
and goal position.
 The next step consists in finding the cells which includes the starting
and the goal position given as inputs for the drone (line 10). Based on these
points, together with the graph G corresponding to the environment model,
Dijkstra algorithm is applied for computing the minimum path (line 11). The
returned cells of the procedure shortest_path, are translated into way points,
expressing the positions in which the drone is allow to evolve into 3D space
towards the goal position (lines 12-15).
 The second part of the path planning algorithm concentrates on
computing the trajectory denoted with DynTraj. For this reason, the global time
Time is considered in the execution of the algorithm, together with a defined
sample time 𝑇𝑇𝑠𝑠 . These impact the estimation for the location of DObat each
moment in time 𝑇𝑇𝑠𝑠, based on its direction 𝑑𝑑𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷 and its velocity 𝑣𝑣𝑣𝑣𝑣𝑣𝐷𝐷𝐷𝐷𝐷𝐷. This
estimation can be visualized on line 23. In order to develop the trajectory for the
dynamic environment, the mapping of the workspace needs to be updated at
each moment in time 𝑇𝑇𝑠𝑠 . Therefore, the cells which intersect the dynamic
obstacle are inhibited (lines 24-25). This way, the drone has the information that
those cells will be avoided and will not be considered in path planning
algorithm. The collision avoidance is verified by computing the distance
between each cell and the current position of the dynamic obstacles 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷,𝑅𝑅𝐶𝐶𝑖𝑖,
with i=1, |𝑅𝑅𝑅𝑅|��������� . If this distance is smaller or equal with the sum between
diagonal of DOb and diagonal of the current cell 𝑅𝑅𝑅𝑅𝑖𝑖, then the movement of the
DOb intersects the current cell. As a result, the input transitions to that cell are
inhibited, thus forbidding the drone to pass through it.

Based on the same search graph Dijkstra algorithm, the sequence of
cells of DynTraj are returned. The method used for this approach is updating
iteratively. In the lines 29-34 is described the construction of DynTraj when the
time to reach the desired position is smaller than the considered global time. On

74 Sofia Huștiu

the lines 35-38 is expressed the path planning when the dynamic obstacle leaves
the limits of the environment, and the drone hasn’t arrived at the goal position.

Algorithm 2 Cell decomposition planning

Input: Environment E, obstacles O, precision E, Drone velocity velDrone, initial and goal
positions (x0,y0,z0)T, (xg,yg,zg)T, Dynamic Object DOb, Dynamic Object velocity velDOb,
Dynamic Object direction dirDOb, Sample time Ts
Output: Free cells C, graph G, drone static trajectory StatTraj, drone dynamic trajectory
 DynTraj
1 C = label split cuboid(E,𝜀𝜀,O)
2 Graph G = (N,Adj), with nodes N = {1,2, . . . ,|C|}
3 Adj = 0|C|×|C|;
4 for RCi, RCj ∈ C, i/=j do

5 𝐈𝐈𝐈𝐈𝐈𝐈𝐢𝐢,𝐣𝐣 = �𝒒𝒒 ∈ 𝐑𝐑𝟑𝟑| �
𝐀𝐀𝐑𝐑𝐑𝐑𝐢𝐢
𝐀𝐀𝐑𝐑𝐑𝐑𝐣𝐣

� 𝐪𝐪 ≤ �
𝐛𝐛𝐑𝐑𝐑𝐑𝐢𝐢
𝐛𝐛𝐑𝐑𝐑𝐑𝐣𝐣

��

6 Convert Inti,j to V-representation VInti,j
7 if |VInti,j| = 4 then
8 Adj(i,j) = 1
9 W aypointi,j = centroid(VInti,j)

10 Find indexes start, stop ∈ N such that (x0,y0,z0)T∈ R Cstart,(xg,yg,zg)T ∈ RCstop
11 Stat_ Cell_ Seq = shortest path(G, Adj, RCstart, RCstop)
12 Denote Stat_ Cell_ Seq = {RC0,RC1 , . . . ,RCni}
13 StatT raj = (x0,y0,z0)T
14 Append W aypointi,i+1 to StatT raj, ∀i=0, . . . ,ni−1
15 Append (xg,yg,zg)T to StatT raj

16 Let finaltime be the time moment when obstacle Dob leaves environment E
17 T ime = {0,Ts,2∗Ts, . . . , f inaltime}
18 Initialize Adjt = Adj, ∀ t∈T ime
19 Denote with Obst the vertices of Dob at time instant t and with Obs centert its center
20 DynT raj = (x0,y0,z0)T (current drone position)
21 for t ∈ T ime do
22 if t >0 then
23 Obs_ centert = Obs_ centert−1+dirDOb∗velDOb∗Ts

24 for RCi ∈ C such that RCi∩ Obst ≠ ∅ do
25 Adjt(:,i) = 0
26 Let RCcurrent be the cell containing the drone at time t
27 Dyn_Cell_Seq = shortest path(G, Adjt, RCcurrent, RCstop)
28 Denote Dyn_Cell_Seq={RCt1,RCt2, . . . ,RCtn}
29 if t+Ts<finaltime then
30 Move drone with speed velDrone along trajectory linking the current position
 with W aypointti,ti+1 where i=1,2 , . . .until time moment t+Ts or until cell RCstop is reached

Bul. Inst. Polit. Iaşi, Vol. 67 (71), Nr. 2, 2021 75

31 Append W aypointti,ti+1 to DynT raj
32 if RCstop was reached then
33 Append (xg,yg,zg)T to DynT raj
34 Return
35 else
36 Move drone with speed velDrone along trajectory linking the current position

 with W aypointti,ti+1, where i=1,2 , . . .
37 Append W aypointti,ti+1 to Dyn T raj
38 Append (xg,yg,zg)T to Dyn T raj

The method described in this subsection has a good base for an offline
path planning algorithm, the idea being based on the model predictive control
strategy, by examine the case with the look-ahead horizon of 𝑇𝑇𝑠𝑠. By predicting
the position of the dynamic obstacle for each 𝑇𝑇𝑠𝑠 moment based on its direction
and velocity, the drone would know the forbidden cells in a selected future
horizon. At the end, the drone could optimize the returned trajectory, based on
the remaining free space and the selected future horizon.

4. Simulation Results

The evaluation of the proposed algorithm in regards to path planning for

a drone, was done in MATLAB simulations, implemented on a mobile
computer unit with Intel® Core™ i7-8750H CPU @ 2.20Ghz and 8GB RAM.
 Let us consider a 3D environment with size 80 x 50 x 100 length unit
(denoted as lu), visualized in Fig. 1, with 6 convex polyhedral static obstacles
with flat base, simulating a city scenario. As mentioned previously, the first step
for the path planning algorithm is represented by the mapping of the free space.
Using a precision ε = 16, the assumed workspace was divided into 764 free
cuboids in 2.97 seconds, as it can be seen in Fig. 4.

Fig. 4 – Rectangular cuboid decomposition for an environment with 6 static obstacles.

76 Sofia Huștiu

 The size of the dynamic obstacle is 7 x 5 x 3 lu, moving with the velocity
𝑣𝑣𝑣𝑣𝑣𝑣𝐷𝐷𝐷𝐷𝐷𝐷 = 9 lu/s. On the other hand, the drone has the velocity 𝑣𝑣𝑣𝑣𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 8 lu/s,
departing from the initial position (20, 40, 25)𝑇𝑇 , having the desired goal
position with the coordinates (50, 37, 73)𝑇𝑇 . For the iterative update of the
environment model (consist in inhibiting the forbidden cells), it was considered
𝑇𝑇𝑠𝑠 = 0.1 seconds. The Fig. 5 depicts the returned trajectories based on the
algorithm presented in this paper. With black color is represented StatTraj –
trajectory computed for the static environment and with green color is represented
DynTraj – trajectory which considers the movement of the dynamic obstacles.

Through simulation it was observed that even though StatTraj reaches the
goal position, after 4 seconds a collision occurs with the dynamic obstacles in the
point with coordinates (27.5, 37.5, 59.38)𝑇𝑇.The collision is illustrated in Fig. 5.
For a better visualization of this scenario, the reader can examine the animations
in the suggested video, where additional numerical simulation was considered:
https://www.youtube.com/watch?v=tZfjdH3Sf2U&ab_channel=LoRISwork.

Fig. 5 – Drone trajectories (DynTraj with green, StatTraj with black) in dynamic
environment. Collision avoidance between StatTraj with Dob (red dashed line).

Comparing the performances between these 2 trajectories, it was

observed that the length of StatTraj is 62.53 lu with 8 changes of direction (or
in other words, the drone traverse 8 cells to reach its destination) and the length
of DynTraj is 68.04 lu with 9 changes of direction, therefore StatTraj has a
smaller trajectory. Since in the calculation of DynTraj the map of the
environment is updated at each sample time, the run time is longer compared
with the run time for computing StatTraj (5.43 seconds, respectively 3.88

https://www.youtube.com/watch?v=tZfjdH3Sf2U&ab_channel=LoRISwork

Bul. Inst. Polit. Iaşi, Vol. 67 (71), Nr. 2, 2021 77

seconds). Nevertheless, the trajectory of StatTraj is only a hypothetical one in
the context of dynamic 3D environment.

5. Conclusions

To conclude, this paper contains the preconditions necessary to develop

a piece-wise collision free trajectory in a known 3D environment, with static
and dynamic obstacles. The first prerequisite captures the analysis of kinematics
and dynamics of a quadcopter, by modeling it with a mathematical nonlinear
representation of 12 states. This model was validated in real time experiments,
using nano quadcopter Crazyflie 2.0. The second prerequisite presented here
assumes the mapping of a 3D environment based on a rectangular cuboid
representation. Considering this mapping and the known movement of the
dynamic obstacle which evolves in this workspace, the proposed algorithm
generates effectively collision free trajectories for the drone, in both scenarios:
static and dynamic spaces.
 Future work will consider movement of a team of drones in a 3D
environment, maintaining the idea of collision avoidance between them,
necessary in achieving one mission for the entire team.

REFERENCES

Duan H., Qiao P., Pigeon-Inspired Optimization: A New Swarm Intelligence Optimizer
for Air Robot Path Planning, Intelligent Computing and Cybernetics, 2014, 7,
24-37.

Fang Z., Luan C., Sun Z., A 2d Voronoi-Based Random Tree for Path Planning in
Complicated 3d Environments, Intelligent Autonomous Systems, 2017, 31,
433-445.

Ge F., Li K., Han Y., Xu W., Wang Y., Path Planning for Oilfield Inspection in a Three-
Dimensional Dynamic Environment with Moving Obstacles Based on Improved
Pigeon-Inspired Optimization Algorithm, Applied Intelligence, 1-18 (2020).

Gheorghiță D., Vîntu I., Mirea L., Brăescu C. Quadcopter Control System, 19th
International Conference on System Theory, Control and Computing
(ICSTCC), 2015, 421-426.

Goel U., Varshney S., Jain A., Maheshwari S., Shukla A., Three Dimensional Path
Planning for UAVs in Dynamic Environment Using Glow-Worm Swarm
Optimization, Procedia Computer Science, 2018, 133, 230-239.

Greiff M., Modelling and Control of the Crazyflie Quadrotor for Aggressive and
Autonomous Flight by Optical Flow Driven State Estimation, 2017, MSc.
Thesis, Lund University.

Huștiu S., Lupașcu M., Popescu Ș., Burlacu A., Kloetzer M., Stable Hovering
Architecture for Nanoquadcopter Applications in Indoor Environments, 22nd
International Conference on System Theory, Control and Computing
(ICSTCC), IEEE, 2018, 659-663.

78 Sofia Huștiu

Huștiu S., Kloetzer M., Burlacu A., Collision Free Path Planning for Unmanned Aerial
Vehicles in Environments with Dynamic Obstacles, 24th International
Conference on System Theory, Control and Computing (ICSTCC), IEEE,
2020, 520-525.

Liu L., Shi R., Li S., Wu J., Path Planning for UAVs Based on Improved Artificial
Potential Field Mwthoid Through Changing the Repulsive Potential Function,
IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), 2016,
2011-2015.

Lupașcu M., Huștiu S., Burlacu A., Kloetzer M., Path Planning for Autonoumous
Drones Using 3d Rectangular Cuboid Decomposition, 23rd International
Conference on System Theory, Control and Computing (ICSTCC), IEEE,
2019, 119-124.

Mahulea C., Kloetzer M., Robot Planning Based on Boolean Specifications Using Petri
Net Models, IEEE Transactions on Automatic Control, 2018, 63, 2218-2225.

Paranjape A., Meier K., Shi X., Chung S.-J, Hutchinson S., Motion Primitive and 3D
Path Planning for Fast Flight Though a Forest, The International Journal of
Robotics Research, 2015, 34, 357-377.

Pastravanu O., Matcovschi MH., Mahulea C., Petri Net Toolbox – Teaching Discrete
Event Systems Under MATLAB, Advances in Automatic Control, 2004, 247-
255.

Tagay A., Omar A., Ali M.H., Development of Control Algorithm for a Quadcopter,
Procedia Computer Science. 2021, 179, 242-251.

Yao P., Wang H., Su Z., Hybrid UAV Path Planning Based on Interfered Fluid
Dynamical System and Improved RRT, 41st Annual Conference of the IEEE
Industrial Electronics Society (IECON), 2015, 829-834.

CERCETĂRI ASUPRA DEZVOLTĂRII UNEI TRAIECTORII FĂRĂ COLIZIUNE
ÎNTR-UN SPAȚIU DE LUCRU 3D DINAMIC PENTRU UN UAV

(Rezumat)

Această lucrare științifică prezintă principalii pași în vederea dezvoltării unei

traiectorii fără coliziune pentru o dronă. Obiectivul principal este atingerea unei poziții
finale, într-un spațiu de lucru cu obstacole dinamice. Primul deziderat este caracterizat
de examinarea cinematicii și a dinamicii unui quadcopter. Pentru acest scop, un model
matematic neliniar a fost construit. Validarea modelului matematic a fost realizată în
MATLAB prin intermediul simulărilor, pentru ca după să poată fi validat și prin
experimente reale. Al doilea obiectiv presupune maparea spațiului de lucru 3D. Pentru
acest obiectiv, a fost implementată o reprezentare bazată pe tehnica decompoziției
celulare, extinsă din mediul 2D. Evaluarea algoritmului de planificare a traiectoriei s-a
realizat prin diferite simulări numerice în diverse scenarii. La sfârșit, o comparație între
2 scenarii diferite este prezentată: pentru un spațiu de lucru 3D doar cu obstacole statice
și pentru un spațiu de lucru 3D dinamic, unde mișcarea obiectului dinamic este
cunoscută.

	PREREQUISITES TO DESIGN A COLLISION FREE
	TRAJECTORY IN A
	3D DYNAMIC ENVIRONMENT FOR AN UAV
	1. Introduction
	2. Prerequisites for a 3D Trajectory
	2.1. Mathematical Model of a Quadcopter
	2.2. Mapping the 3D Environment
	3. Collision Free Trajectory
	4. Simulation Results
	5. Conclusions

	REFERENCES

